
CS 4510 Automata and Complexity 4/13/2023

Lecture 19: Savitch’s Theorem

Lecturer: Abrahim Ladha Scribe(s): Rahul

So far, we proved a few theorems in and around NP. We proved the Cook-Levin theorem,
that SAT was NP-complete. We also proved Ladner’s theorem, that if P ̸= NP then there
exists languages ̸∈ P, ∈ NP and not NP-complete. Today’s lecture will be on space, that
“other” resource. Space is a very different resource than time. After an algorithm finishes
running, you get the space back. You can never get the time back. This makes space both
a less interesting and more interesting resource to study since it uses techniques and tricks
which would not work for time. They are less applicable, but interesting in their own right.
For example, performing super-exponential search to use one less unit of space.

1 Space as a Resource

Recall TIME(f(n)), SPACE(f(n)) are the classes of languages decidable in f(n) time or
space, respectively. We prove the following containment chain:

TIME(f(n)) ⊆ SPACE(f(n)) ⊆ TIME(2O(f(n)))

Consider a language decidable in f(n) time. There exists a Turing machine which takes
f(n) steps to decide this language on inputs of length n. At each step, it may use at most
one new cell of the tape. So a machine which uses f(n) time can use no more than f(n)
space. The first containment then follows. We show a stronger result to prove the second
containment.

SPACE(f(n)) ⊆ NSPACE(f(n)) ⊆ TIME(2O(f(n)))

The first containment follows from the generalization of non-determinism. We can now
show the second containment in a creative way. Given a language decidable by a non-
deterministic Turing Machine in f(n) space, we want to show this language is decidable
deterministically in 2O(f(n)) time. We will do so by graph search! For some specific N,w,
let the configuration graph G be a directed graph such that each node corresponds to a
configuration of N on w. Note that if N runs in f(n) space, then this graph is not infinite.
There exists a bound of the possible number of vertices. Also notice that since as defined,
N must halt on all inputs, this graph does not contain a cycle.

19: Savitch’s Theorem-1



Note that we do not count the input as a part of the space used. In some models, the input is
on a separate read-only tape. Since our machine N is non-deterministic, our graph may have
a arity greater than one. We may assume it has arity no more than two. In order to show
NSPACE(f(n)) ⊆ TIME(2O(f(n))) we give an algorithm which runs in 2O(f(n)) deterministic
time. First using N,w build the configuration graph. Then we perform BFS from the start
configuration Co to an accepting one Ca. BFS is linear time in the size of input. This
graph has worst case 2O(f(n)) nodes, as that is the number of possible configurations of an
f(n) space machine. It also takes that long to build the graph, so we see this is a 2O(f(n))

deterministic algorithm so NSPACE(f(n)) ⊆ TIME(2O(f(n))).

2 Savitch’s Theorem

Our main result today:
NSPACE(f(n)) ⊆ SPACE(f2(n))

with some conditions on f . Let us first interpret this result. We somehow are able to “de-
nondeterminisfy” something with only polynomial overhead in the resource used. Could
such a technique apply to P vs NP? Probably not, or someone would have found it by
now. So although we only get polynomial space cost, we can infer we probably will get a
super-polynomial, maybe exponential time cost. Our deterministic algorithm may only use
f2(n) space, but it should probably use 2f(n) time to perform this simulation.

A second immediate remark is that since polynomials are closed under composition,
multiplication, we see NPSPACE = PSPACE. The study of space, already looks very different
than the study of time. This should be an analogous problem to P vs NP. Unlike that
problem, this result is unexpected, and we have been able to solve it.

Now onto the proof. Rather than some naive strategy, we are going to use divide and
conquer. We want to simulate a nondeterministic Turing machine N which uses f(n) space,
deterministically using no more than f2(n) space. If Co is the start configuration, Ca is the

accept configuration, and C is some other configuration, notice that Co

∗
⊢ Ca in t steps if

Co

∗
⊢ C in t/2 steps and C

∗
⊢ Ca in t/2 steps for some t.

This will be our divide and conquer recurrence. We brute force search for some C and
perform our recurrence in this way. Importantly, our recursive calls are run sequentially
and reuse space.

It certainly is correct. M is a deterministic simulator of N , so it decides the same
language. Now onto the analysis. If N uses f(n) space, we hope to show M simulates N
in no more than f2(n) space. For each recursive call, a stack frame containing Ci, Cj , t
is stored. Each level of recursion uses O(f(n)) space, as a worst case. Ci, Cj are of size
O(f(n)) since N uses f(n) space. Each level divides t = 2df(n) in half. It may help if you
recall anything about the Master theorem, or even geometric series. Here we won’t measure

19: Savitch’s Theorem-2



Algorithm 1 M(N,w) Deterministic simulator of N on w

C0 = start configuration of N on w
Ca = accepting configuration of N
d = chosen such that N has no more than 2df(n) configurations
Y IELDS(C0, Ca, 2

df(n))

Algorithm 2 Y IELDS(Ci, Cj , t)

if Ci = Cj then
return true

end if
if t = 1 then

if Ci ⊢ Cj in one step by δ of N then
return true

end if
else t > 1

for configuration C of N of size f(n) do
Y IELDS(Ci, C, t/2)
Y IELDS(C,Cj , t/2)
return true if both calls return true

end for
end if
return false

time, but space. The depth of our recursion tree is log t = log(2df(n)) = O(f(n)). Since
each level of our recursion tree takes O(f(n)) space and our recursion has O(f(n)) depth
we observe the total space used is O(f(n)) ·O(f(n)) = O(f2(n))

I mentioned that there were some restrictions on f(n). First is that we may assume
it is space-constructible, that M can compute f(n) within O(f(n)) space. Most obvious
functions have this property, but some crazy ones do not. Second is that f was super-linear,
that f(n) ≥ n. This can be improved to f(n) ≥ log(n) with some automata specification.
A final remark, Hartmanis came up with a similar idea but to prove a theorem about
context-free languages1.

3 PSPACE-completeness

Recall that SAT is NP-complete, a boolean formula might look like (x1 ∨ x2 ∨ x3). This is
not a boolean formula so much as it is a logical formula! We just hide the quantifiers. We
say a boolean formula is satisfiable if there exists a satisfying assignment. We could simply
quantify over the assignment, like ∃x1∃x2∃x3(x1 ∨ x2 ∨ x3).

What if we allow for universal quantifiers? Like ∀x1∀x2∃x3(x1 ∨x2 ∨x3)? This is called
TQBF: True Quantifies Boolean Formula. TQBF = { ϕ | ϕ is a true quantified boolean

1See this post by Lipton for some fascinating history of the theorem https://rjlipton.wpcomstaging.

com/2009/04/05/savitchs-theorem

19: Savitch’s Theorem-3



formula }. Turns out that as SAT is NP-Complete, TQBF PSPACE-complete. The intuition
is that since TQBF is a generalization of SAT, it should be harder than SAT.

Notice SAT has structure like most puzzles. A puzzle is a single-player device in which
you make a sequence of decisions to reach some goal. Intuitively, ∃x1,∃x2, ... is your sequence
of decisions. Many puzzles are NP-complete since they can encode this structure.

Notice TQBF has structure like two player games of perfect information. Consider a
TQBF with quantifiers like ∃∃∀∀∀∃∃... you can reformulate this into a TQBF with quan-
tifiers which only alternate, like ∃∀∃∀... With a little abuse of types, you turn two of the
same kind of quantifier into one as ∃x1∃x2 ≡ ∃(x1, x2). Having a TQBF with alternating
quantifiers looks like a game! It is a literal minimax. You make a choice, then for all possible
moves the opponent could make, then you make a choice, then the opponent, and so on.

Most two player games, under appropriate restrictions and generalizations, are PSPACE-
complete. Chess, checkers, Go and more. Some appropriate restrictions would be that the
game require perfect information (no shadowed areas of the map), be generalized in some
way2 and a polynomial bound on the depth of number of moves. Without this bound many
of these games are actually EXPTIME-complete although their proofs are less general.

2Recall that chess is played on a fixed game with a fixed number of pieces. There is no way to measure
its complexity as a function of some n, as its technically a finite game. Generalized chess is proven to be
PSPACE-complete if you generalize the board size as a function of n.

19: Savitch’s Theorem-4



Because of how we can interpret TQBF vs SAT, we can also intuitively say that games
are harder than puzzles. It should require a proof that TQBF is PSPACE-complete, like we
did for SAT, but we don’t have enough time.

19: Savitch’s Theorem-5


