
CS 4510 Automata and Complexity January 9th 2023

Lecture 1: Introduction

Lecturer: Abrahim Ladha Scribe(s): Akshay Kulkarni

1 Introduction

CS 4510: Automata & Complexity Theory. This course is primarily the study of two
questions:

1. What are the limits of computation? (Computability Theory: Approx. 70% of course)

2. What makes some problems easy and others hard? (Complexity Theory: Approx.
30% of course)

Fundamentally about theoretical computer science—what is a computer and how can we
effectively describe its limits and capacities? Automata are tools that we can use to reason
about more powerful versions.

1.1 Formal Language Theory

Let Σ be a finite set of characters called the input alphabet.

Examples:

1. Σ = {a, b}, {1}, {0, 1}, {a, . . . , z, A . . . , Z}

2. Σ2 = {aa, ab, ba, bb} (strings of length 2)

3. Σ0 = {ε} (strings of length 0)

4. Σ∗ = ∪∞
i=1Σ

i = Σ0 ∪ Σ1 ∪ Σ2 ∪ . . . (all strings)

A language is any subset of strings L ⊆ Σ∗

1.2 Automata

A finite automaton is a 5-tuple (Q,Σ, δ, q0, F ):

1. Q = {q0, . . . , qk} is a finite set called the states,

2. Σ is the alphabet,

3. δ : Q× Σ → Q is the transition function,

4. q0 ∈ Q is the start state

5. F ⊆ Q is the set of acceptance states.
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An automata M decides a language L if:

M(w) accepts L ⇐⇒ w ∈ L (1)

M(w) rejects L ⇐⇒ w /∈ L (2)

Examples:

1. L = {w ∈ Σ∗ | w begins with a}

q0start

q1

q2

a

b

a,b

a,b

2. L = {w ∈ Σ∗ | #a(w) is even}

q0start q1

a

a

b

b

A decision problem is phrased as any yes/no question.

Examples:

1. L = {an | n is even}

q0start q1

q2

a

a
b

b

a,b
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2. L = {w ∈ Σ∗ | #a(w) ≡ 3, 4 (mod 7)}

q0start

q1

q2

q3

q4

q5

q6
a a a a a a

a

b

b

b

b

b

b

b

3. L = {w ∈ Σ∗ | int(w) is prime}
We are not concerned with the alphabet really, not for the problems we want to
study. Analogously, the primality of an integer has nothing to do with the base it
is represented in. We are using languages to talk about decision problems. We have
turned computational questions into ones about set membership. If an automata can
determine correctly if some w ∈ L, then it certainly has the power of primality testing.

DFA’s can be used to simulate two DFA’s. For example, consider the languages

L1 = {w ∈ Σ∗ | w ends with a b} (3)

L2 = {w ∈ Σ∗ | #b(w) is even} (4)

Lets make two DFAs for these languages.

q0start q1

b

a

a

b

q2start q3

b

b

a

a
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We construct a DFA that simulates two DFAs, to compute L3 = L1 ∩ L2 Note that
L1 is decidable by the DFA (Σ, Q1, q01, δ1, F1) and L2 is decidable by (Σ, Q2, q02, δ2, F2).
We can use the properties of set intersection to define a DFA that accepts L1 ∩ L2 =
(Σ, Q3, q03, δ3, F3):

1. Q3 = Q1 ×Q2

2. Σ is the same

3. δ3((qi, qj), a) = (δ1(qi, a), δ2(qj , a)) for qi ∈ Q1 and qj ∈ Q2

4. q03 = (q01, q02)

5. F3 = F1 × F2

Out cartesian product DFA then looks like the following.

(q0, q2)start (q0, q3)

(q1, q2) (q1, q3)

b

b
a

b

a

b

a a

Note that if we made F3 = (Q1 × F2) ∪ (F1 × Q2) we would have accepting states for the
union of our two languages.

1.3 Regularity

A language is regular if and only if it is recognized by a DFA. We write the set of languages
decidable by a DFA as L (DFA)
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Lecture 2: Nondeterminism

Lecturer: Abrahim Ladha Scribe(s): Samina Shiraj Mulani

1 Introduction

We noted that DFAs are weak. Let’s try to extend or generalize them. A DFA can be
represented as (Q,Σ, δ, q0, F ). When thinking about extending DFAs, the only useful thing
to extend is the way in which states interact with each other, i.e., δ.
Let’s extend δ in 3 ways:

1. If a transition is undefined, we implicitly reject. As an example, Consider the following
DFA which represents the language {w ∈ Σ∗ | w begins with a}

q0start

q1

q2

a

b

a,b

a,b

We can now represent this as

q0start q1
a

a,b

2. Allow transitions of more than one of the same type. This means that you can have
multiple outgoing transitions with the same input. For example
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q0start

q1

q2

a

a

3. Allow “ε-transitions”, which can be taken for free. For example

q0start q1
ε, a

b

a, ab, abb, b, bb, ε are some of the strings accepted by this NFA.

2 Coping with nondeterminism

Its important to understand nondeterminism and not just have deterministic coping strate-
gies. We say a nondeterministic computation accepts if at least one computation path
reaches an accept state. The following analogies help in visualizing this aspect -

1. Depth First Search DFS on the DFA until you reach an accept state.

2. Lucky Coin Imagine you flip a lucky coin that tells you exactly which fork/path to
take.

3. Alternate timelines For each nondeterministic action, create multiple timelines,
similar to creating multiple copies.

3 Definition and a few examples

A Nondeterminisitic Finte Automata (NFA) can be represented by a 5-tuple (Σ, Q, q0, δ, F )
where:

1. Σ - finite alphabet

2. Q - finite set of states

3. q0 - denoted start state

4. δ - δ : Q× (Σ ∪ {ε}) → P(Q)
P(Q) represents the power set of Q, which is the set of all subsets of Q. The power
set of a set Q has 2n elements where n is the number of elements in Q.

5. F - the set of final states F ⊆ Q

Lets show a few examples
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1. L1 = {w ∈ Σ∗ | w ends with aaaa}

q0start q1 q2 q3 q4
a a a a

a, b

2. Lx,y = {axn+y | n ∈ N}
Lengths of the strings in this language form an Arithmetic Progression. We can show
that there exists an NFA for every x, y. Note that the loop is of length x while the
tail (q4 to q5 in the representation) is of length y.

q0start

q1

q2

q3

q4 q5
a

aa

a

a a

Every DFA is an NFA, i.e., L (DFA) ⊆ L (NFA). For every NFA, we will show you
can construct an equivalent DFA. This means that L (NFA) ⊆ L (DFA). Combining the
aforementioned point, we get L (DFA) = L (NFA) Note that when we perform a comple-
ment of the accept states in a DFA that represents a language L, we get the complement of
the language. The same doesn’t hold for an NFA due to the presence of the implicit reject
state.

4 L (NFA) ⊆ L (DFA)

We simulate an NFA on a DFA. Each state of the DFA corresponds to any number of states
of the NFA. Sure, a NFA can be in many states, but only finitely many. To each possible
set of states, we will simulate that on our DFA as a single state. We first define the concept
of reach.
reach(qi) = {qi and any state reachable from qi by ε transitions}. For example

q0start q1 q2
ε ε

Then reach(q0) = {q0, q1, q2}. Let the NFAN = (Σ, Q, q0, δ, F ) MakeD = (Σ
′
, Q

′
, q0

′, δ′, F ′)

• Σ′ = Σ

• Q′ = P(Q)
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• q0
′ = reach(q0)

• δ
′
({q1, ..., qk}, a) =

⋃k
i=1 reach(δ(qi, a))

• F ′ = {f ⊆ Q | f ∩ F ̸= ∅}

Example -
L2 = {w ∈ Σ∗ | w ends with aa}

q0start q1 q2
a a

a, b

By following the above algorithm, we get the corresponding DFA

q0start q01 q012

q02

q12q2q1

q∅

a a

b

b
a

a

a
a

b
a,b

b

b

a,b

We observe that there are unreachable states (example - q02). So the algorithm may or
may not give a minimal DFA. On cleaning up these unreachable states, we get the following
DFA

q0start q01 q012
a a

b

b
ab

Each state represents a superposition of the states in the NFA. One utility of NFAs is that
we can use them to create a more convenient representation of the union of two languages.
Consider L3 = {w ∈ Σ∗ | w ends with b} and L4 = {w ∈ Σ∗ | #b(w) is even} We can
construct the following NFA that represents L3 ∪ L4
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q0start

q1 q2

q3 q4

ε

ε

a

a a

b

a

b

b

b

We can also use this idea to prove that the union of 2 regular languages is always regular.
An alternate is to follow last lecture’s approach using Cartesian Product, which can be
comparatively more cumbersome.

5 The Road Not Taken

By Robert Frost, emphasis mine

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood

And looked down one as far as I could
To where it bent in the undergrowth;
Then took the other, as just as fair,
And having perhaps the better claim,

Because it was grassy and wanted wear;
Though as for that the passing there
Had worn them really about the same,
And both that morning equally lay
In leaves no step had trodden black.
Oh, I kept the first for another day!

Yet knowing how way leads on to way,
I doubted if I should ever come back.

I shall be telling this with a sigh
Somewhere ages and ages hence:

Two roads diverged in a wood, and I—
I took the one less traveled by,

And that has made all the difference.

The moral of this poem in the context of our lecture is that Robert Frost is a deterministic
actor, one who sees two roads and is forced to choose. If he was nondeterministic, he
wouldn’t have to choose. He could come to a fork in the road and just take it.
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Lecture 3: Regular Expressions

Lecturer: Abrahim Ladha Scribe(s): Yitong Li

1 Regular Expressions

In the terminal, we usually enter “ls *.pdf” to search for every single file ending with
“.pdf”. Such language is called regular expressions.

Definition 1.1. We say that R is a regular expression, or regex, if R is one of the
following:

(a) ∅ - empty set

(b) ε - empty string

(c) a ∀a ∈ Σ

(d) R∗
i , RiRj or Ri ∪Rj where Ri, Rj are regular expressions.

♢

Our first three, our base cases. These are actually shorthand for the sets ∅, {ε}, {a}.
Here are some examples of regular expressions:

1. a∗ = {ai | i ∈ N} = {ε, a, aa, aaa, . . . }

2. a∗ba∗ = {aibaj | i, j ∈ N} = all strings with a single b.

3. Σ∗aabΣ∗ = {all strings with aab as a substring}

4. (a ∪ b)∗aab(a ∪ b)∗

5. (ΣΣ)∗ = ((a ∪ b)(a ∪ b))∗ = ((aa ∪ ab ∪ ba ∪ bb))∗ = all strings of even length

6. L1L2 = {xy ∈ Σ∗ | x ∈ L1, y ∈ L2}

7. a∗∅ = ∅

8. ∅∗ = {ε}

2 L (REX) ⊆ L (NFA)

To prove that L (REX) ⊆ L (NFA), we want to show that for each regular expression,
there exists an equivalent NFA. Given that regular expressions are recursively defined, it is
natural to choose to proceed by induction. Let R be a regular expression. We start with
the following base cases:

3: Regular Expressions-1



1. R = ∅.

2. R = ε.

3. R = a ∈ Σ.

Next, we continue with the inductive steps. Let Ri, Rj be regular expressions that decide
regular languages, by strong induction. We will show R∗

i , RiRj , Ri ∪ Rj are also regular.
Since Ri, Rj are regular, there exist NFAs Ni, Nj to decide L(Ri), L(Rj).

1. R = R∗
i .

add new state q′, ε-transition from q′ and all states of F to the old start state q, mark
q′ as accepting.

2. R = RiRj .

remove final states Fi and ∀f ∈ Fi, add δ(f, ε) = qj where qj is the initial state of Nj .

3. Ri ∪Rj .
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add new start state q and δ(q, ε) = {qi, qj}.

3 Example from REX to NFA

◦ (ab ∪ aab)∗
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4 L (NFA) ⊆ L (REX)

Definition 4.1. The GNFA is defined as an NFA with the following properties:

(a) The transitions have a regular expression on them.

(b) The start state has no incoming transitions

(c) The final state has no outgoing transitions

(d) Every pair of states has a transition.

♢ Taking a transition in a

DFA is reading some single symbol of the front of the input. Taking a transition of a GNFA
is nondeterministically choosing some prefix of the input which satisfies the regex on the
transition. To convert an NFA to a regular expression, we first add a new start and final
state. Then, rip out one state at a time using the following rules until only two states and

one transition is left. q0 q1 q2
R1

R4

R2

R3 = q0 q2
(R1(R2)

∗R3) ∪R4

For most very connected NFAs, conversion to a regex will result in one with exponential
length. Here is a relatively simple example.
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5 Set Closure

We say a set S is closed under an operation ∆ if ∀a, b ∈ S, a∆b ∈ S.

1. N is closed under +,× and not closed under −,÷.

2. Z/{0} is closed under +,−,× and not closed under ÷.

3. Q is closed under +,−,× and not closed under ÷.

4. Regular languages are closed under ∗, ◦,∪ and complement.

Although regular languages are closed under complement. Complement is not a valid oper-
ation of a regular expression. Using the operations regular languages are known to be closed
under, we can prove closure under even more operations without having to contruct messy
DFAs or NFAs. Recall we did a cartesian product of DFAs to prove that regular languages
were closed under intersection. We give a shorter proof in the syntax of set theory.

Suppose that Li, Lj are two regular languages. Then surely Li, Lj are regular, then

surely Li ∪ Lj is regular. Then so must be Li ∪ Lj . From Demorgans law, we know that

Li ∪ Lj = Li ∩ Lj .
Similarly, we can show regular languages are closed under symmetric difference, or

xor. We have a formula under composition of operators that we maintain closure under.
Li ⊕ Lj = (Li ∩  Lj) ∪ (Li ∩ Lj)
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Lecture 4: The Pumping Lemma

Lecturer: Abrahim Ladha Scribe(s): Michael Wechsler

1 Background

We previously mentioned that we have some intuition on the limitations of DFAs.

• ex) {anbn | n ∈ N} should not be possible with finite memory since it needs a counter

Suppose we have a DFA, D, made up of p states. Consider a word, w, such that |w| = p+1.
When we simulate D(w), consider the sequence of states visited when deciding if w ∈ L(D)

qistart qj qk
x

y

z

By the Pigeonhole Principle, some state (qj above) appears twice in this sequence, and
our DFA must contain a loop. The details of the loop are not important, we just want to
know that it exists.

⋆ Pigeonhole Principle: if you have p + 1 pigeons and p pigeonholes, there must be at
least 1 pigeonhole with greater than 1 pigeons in it

Claim: If xyz ∈ L,∀i, xyiz ∈ L due to the DFA pictured above

Important Fact: If a language is regular, then it can be pumped

• Contrapositive (Equivalent): If a language cannot be pumped, then it is not regular

• Converse (NOT Equivalent): If a language can be pumped, then it is regular

– This is not true and will be seen at the end of note section 3.2

2 Formula

The pumping lemma has many moving pieces and can be tricky to apply. I suggest you use
this formula exactly. L is the language we want to prove is not regular.

1. Assume to the contrary, L is regular with pumping length p (pumping length is the
number of states in L’s DFA)

2. Choose some s ∈ L such that |s| ≥ p
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3. For all cases s = xyz such that |xy| ≤ p and |y| > 0

4. Choose i ̸= 1 such that xyiz ̸∈ L

5. Conclude that L cannot be pumped, which means L is not regular

We require that |s| ≥ p so we have the pigeonhole condition, and we can pump the string.
We require that |y| > 0 so we pump something non-trivial. For every language, you can
pump y = ε since its true that ∀i εi = ε. We require that |xy| ≤ p so that our pigeonhole
condition occurs somewhere in what we have denoted as xy.

3 Examples

3.1 L1 = {0n1n | n ∈ N}

1. Assume to the contrary, L1 is regular with pumping length p

2. Let s = 0p1p and notice that s ∈ L1 and |s| = 2p ≥ p

3. There is only 1 case since the first p characters in the string are all 0s
x = 0a, y = 0b, z = 0p−a−b1p subject to |xy| = a+ b ≤ p and |y| = b > 0

4. Choose i = 2
xyiz = xy2z = xyyz = 0a0b0b0p−a−b1p = 0p+b1p

5. We know that b > 0, so the number of 0s does not equal the number of 1s since
p+ b > p. Thus, L1 cannot be pumped, and as a result, is not regular.

3.2 L2 = {wwR | w ∈ Σ∗} (Even-length palindromes)

⋆ Note: a string “raised” to R is the reverse of the string

1. Assume to the contrary, L2 is regular with pumping length p

2. Let s = 0p−1110p−1 (We are choosing a poor s on purpose)
Confirm that s ∈ L2 and |s| = 2p ≥ p

3. The first p characters in the string are different, meaning there are several cases (2)

(a) x = 0a, y = 0b, z = 0p−1−a−b110p−1

Subject to |xy| = a+ b ≤ p and |y| = b > 0

(b) x = 0a, y = 0p−1−a1, z = 10p−1

Subject to |xy| = a+ p− 1− a+ 1 = p ≥ p and |y| = p− 1− a+ 1 > 0

4. Choose i for each case

(a) Choose i = 2
xy2z = xyyz = 0a0b0b0p−1−a−b110p−1 = 0p−1+b110p−1

Since b > 0, we know that p − 1 + b ̸= p − 1. Therefore, the two sections of 0s
are unequal and the string is not a palindrome
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(b) Choose i = 0
xy0z = xz = 0a10p−1

Since there is only one 1, this is not an even-length palindrome

5. For both cases, the language could not be pumped. Therefore, L2 is not regular.

⋆ Note: Letting s = 0p0p would result in a successful pump, but this does not mean the
language is regular. Try to choose s carefully to avoid this situation.

3.3 L3 = { ww | w ∈ Σ∗}, assume Σ = {0, 1}

1. Assume to the contrary, L3 is regular with pumping length p

2. Let s = 0p10p1 and notice that s ∈ L3 and |s| = 2p+ 2 ≥ p

3. There is only 1 case since the first p characters in the string are all 0s
x = 0a, y = 0b, z = 0p−a−b10p1
Subject to |xy| = a+ b ≤ p and |y| = b > 0

4. Choose i = 2
xy2z = xyyz = 0a0b0b0p−a−b10p1 = 0p+b10p1
Take the right-most p+2 characters in xy2z. This string, which we’ll call w2 = 10p1.
Now, there are two cases for the leftmost string, w1 = 0p+b.

(a) If b = 1, xy2z is not even length, and therefore not in L3

(b) If b > 1, the midpoint of xy2z = w1w2 is in the first block of 0s. We can tell that
w1 ̸= w2, and therefore, xy2z is not in L3

5. Both cases end with the pumped string not being in L3. Thus, L3 cannot be pumped
and is not regular.

3.4 L4 = {0n1n2n | n ∈ N} - A note on choosing a BAD s

• Assume to the contrary, L4 is regular and with pumping length p

• Let s = 0⌊p/3⌋+11⌊p/3⌋+12⌊p/3⌋+1

s ∈ L4 and |s| > p+ 1 ≥ p

• There are 6 cases for this string

0.............01.............12.............2
| x | y | z |
| x | y | z |
| x | y | z |
| x | y | z |
| x | y | z |
| x | y | z |
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There are too many cases. Choose a better s instead of continuing this proof. For
each of the six cases, you would be required to construct x, y, z choose i, and show
xyiz ̸∈ L. It can be easy to miss a case. A better choice is s = 0p1p2p which has a
similar proof as shown previously.

Lets do a unary example.

3.5 L5 = {1n2 | n ∈ N}

1. Assume to the contrary, L5 is regular with pumping length p

2. Let s = 1p
2
and observe that s ∈ L5 and |s| = p2 ≥ p

3. There is only 1 case since the first p characters in the string are all 1s
x = 1a, y = 1b, z = 1p

2−a−b

Subject to |xy| = a+ b ≤ p and |y| = b > 0

4. Look at i = 2
xy2z = xyyz = 1a1b1b1p

2−a−b = 1p
2+b

Since b > 0, p2 + b > p2

Since a+ b ≤ p, b ≤ p
Thus p2 + b ≤ p2 + p < p2 + p+ (p+ 1) = p2 + 2p+ 1 = (p+ 1)2

By the first and third lines, we know |1p2 | < |1p2+b| < |1(p+1)2 |

5. By the last line, we can see that xy2z falls between two adjacent strings in L5. There-
fore, its length is not some perfect square and is not in L5. Thus, L5 cannot be
pumped and is not regular.
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Lecture 5: Context-Free Grammars

Lecturer: Abrahim Ladha Scribe(s): Rishabh Singhal

1 Background

Automata So far we have only looked at automata. These are usually tasked with Decision or
Recognition. It’s a fairly mechanical model, a decision procedure. You look at the
input scanning left to right and do something.

– Given w ∈ Σ, is w ∈ L(D)? This is not that hard, you just run the automata on
the input.

– Characterizing all of L(D)? This is much harder for an automata. If I give you
a DFA or NFA and ask you to describe exactly the strings it accepts, this is not
as easy.

Grammars In contrast, a grammar is tasked with Production or Generation. A grammar
will non-deterministically produce only the correct strings, like a flower blooming. It
doesn’t start with an input to look at, it starts with nothing. Defined with the rules
we give it, it will produce a string according to those rules.

– Given w ∈ Σ, is w ∈ L(G)? This is surprisingly non-trivial

– Characterizing all of L(G)? This is surprisingly easier.

2 Formal Definition of Context-Free Grammar

We represent a context-free grammar (CFG) as a four tuple (V,Σ, R, S) such that:

• V Non-Terminals or Variables. These are always capitalized like {S,A,B, ...}

• Σ Terminals or our alphabet. These are always lower-case like {a, b, c, .....}

• R Productions or Rules. Each are of them will be of form V → (V ∪ Σ)∗. The left-
hand side of the production will be a single non-terminal and the right-hand side will
be a string of terminals and non-terminals.

• S ∈ V is our designated start non-terminal.

For A ∈ V,w ∈ (V ∪Σ)∗, with production of the form A → w, we apply a production as
a substring replacement of a “working string” like xAz =⇒ xwz, for x, z ∈ (V ∪Σ)∗. When
we write wi =⇒ wi+1 we mean that wi “yields” wi+1 after application of one production.
If S =⇒ w1 =⇒ w2 =⇒ w3... =⇒ wn with w ∈ Σ∗ we say that w ∈ L(G) and may

write S
∗

=⇒ w.
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For a context-free grammar G, we characterize the set of strings in L(G) as those and
only those produced non-deterministically starting from S. Observe that a production halts
when there are no more non-terminals in the working string. We say that a language L is
context-free if ther exists a context-free grammar G such that L = L(G).

2.1 Examples

Like a state diagram, you can give all parts of the CFG by just giving the set of productions.
It implicitly gives the terminals and non-terminals, and we always denote S as the start
non-terminal.

2.1.1 {anbn | n ∈ N}

We write {S → aSb, S → ε} or just {S → aSb | ε}. If we have two or more productions with
the same beginning non-terminal, we may use “|” as a shorthand to “or” those productions
together. Let us say we want to produce a3b3 the process we follow is

S =⇒ aSb =⇒ a(aSb)b =⇒ aaSbb =⇒ aaaSbbb =⇒ aaabbb =⇒ a3b3

We repeatedly apply the first production, and terminate when we have no more non-
terminals in our working string. This occurs when we apply the second rule, S → ε. Notice
that it has to produce exactly the strings of the form anbn. This was our canonical example
of a non-regular language, the first one we used for pumping. This should convince you
atleast, that the languages produced by context-free grammars, L (CFG), is not equal to
the regular languages. Later we will show it is a strict super set.

2.1.2 {wwR | w ∈ Σ∗}

Our productions are similar. {S → aSa | bSb | ε}. This generates even length palindromes.
As we apply productions, the left and right of our primary recursive production effectively
act like two stacks, mirrors of each other. This generates the string which is a palindrome
and these strings are also even in length. We can conserve the same idea, to generate
palindrome of odd length.

2.1.3 {wΣwR | w ∈ Σ∗}

We write this as {S → aSa | bSb | a | b}. We may combine ideas from the previous two
examples to show the set of all palindromes is a context-free language, with the grammar
{S → aSa | bSb | a | b | ε}. We pumped a third language, {ww | w ∈ Σ∗}. As some
foreshadowing, this language is not regular, but it is also not context free.

2.1.4 Σ∗

There exist many equivalent grammars for this language. These may include

• S → aSa | bSb | aSb | bSa | a | b | ε

• S → aaS | abS | baS | bbS | a | b | ε

• S → aS | bS | ε
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2.1.5 ∅

If a grammar produces no strings, not even ε, it is either trivial, or some how does not have
a halting condition. There are a few you could come up with, but a non-trivial grammar
for this would be {S → A,A → S}. No production of this terminates.

2.1.6 Dyck Language

Consider the grammar {S → (S) | SS | ε}. This language is the set of balanced, or matching
paranthesis. It has a special name, called the Dyck language.

We can prove it is not regular by closure. Assume to the contrary L(G) was regular.
Then by closure, so must be L(G) ∩ (∗)∗. The left side enforces that the number of opens
equals the number of closes, and the right hand side enforces that all the opens come before
all the closes. The intersection is the logical and of these, so we see this intersection must
be equal to {(n)n | n ∈ N}, our canonical non-regular language, a contradiction. Therefore,
the Dyck language is not regular.

2.1.7 Arithmetic Expressions

Consider the following grammar:

S → S + T | T
T → T × F | F
F → (S) | a

with V = {S, T, F},Σ = {(, ),×,+, a}. Lets do an example of a long production to show
this grammar generates (a+ a)× a

S =⇒ T =⇒ T × F =⇒ F × F =⇒ (S)× F =⇒
(S)× a =⇒ (S + T )× a =⇒ (T + T )× a =⇒ (F + T )× a =⇒

(F + F )× a =⇒ (F + a)× a =⇒ (a+ a)× a

2.1.8 One last example

On the homework, you were asked to pump the language {anbambn+m | n,m ∈ N}. First
notice that for some n,m that anbambn+m = anbambnbm. We have matching blocks of the
same size, but we can’t pair them up as written. We notice that letters of the same kind
obviously commute, so we see anbambnbm = anbambmbn = an(bambm)bn. This gives us the
intuition on how we would build our grammar as {S → aSb | bR,R → aRb | ε}. Just to
work out some productions, they may look like

S
∗

=⇒ anSbn
∗

=⇒ anbRbn
∗

=⇒ anbamRbmbn
∗

=⇒ anbambmbn = anbambm+n
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3 Relationship with Regular Languages

We say a grammar is right-regular if it only has productions of the form A → aB or
A → a or A → ε, where A,B are any non-terminals, and a is any terminal. Certainly
every right-regular grammar is also context-free, we claim that the right-regular grammars
decide exactly the regular languages. The proof of this characterization is not complicated,
but tedious1. Instead we will highlight just the part of given a DFA, how one might
construct a right-regular grammar. This should convince you that we are working with
a strictly more powerful computational model, L (DFA) ⊊ L (CFG). For a DFA of the
form (Q,Σ, q0, δ, F ) we construct a grammar (V,Σ, R, S).

• For Q = {q0, ..., qk} we have non-terminals V = {Q0, ..., Qk}

• The set of terminals for our grammar is identical to the alphabet for our DFA: Σ = Σ

• For q0 the start state of our DFA, we designate our start non-terminal as Q0

• For every transition of the form δ(qi, a) = qj , we add production Qi → aQj

• For every qf ∈ Q, we add production Qf → ε

Convince yourself of its correctness.

4 Closure of Context-Free Language

We will prove that CFLs are closed under union, concatenation, and star. Let G1, G2 be
two CFGs to produce L(G1) and L(G2) with start non-terminals S1, S2 respectively.

L(G1) ∪ L(G2) Copy all productions, add new start state S, and a new production S → S1 | S2

L(G1)L(G2) Similarly, with new production S → S1S2

L(G1)
∗ Add new productions S → S1S | ε

Later we will show CFLs are not closed under intersection or complement. This may be
intuitive, if you observe the behavior of a CFG. It only knows how to grow correct strings.

1I have a more detailed proof here https://ladha.me/files/sectionX/regulargrammars.pdf
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Lecture 6: Syntactic Structures

Lecturer: Abrahim Ladha Scribe(s): Akshay Kulkarni

1 Syntactic Structures

1.1 Language

Linguistics is the study of language. This includes its structure, etymology, history, ev-
erything. Its systematic. Fundamentally, language is communication. Suppose we have
a listener and a speaker, and the speaker says “horse”. The way we represent that idea
syntactically, as a word or utterance, can have nothing to do with the idea itself. That’s
language. Language is an agreement we all have about what things mean. “Horse” is noth-
ing. “Horse” is an utterance I make by moving vocal cords and exhaling air at a frequency
you pick up with your ears.

The concept, the semantic value of “horse” is vastly more complicated than the sound
or word itself. I say or utter “horse” and in our mind, you create an image of a herbivore
quadruped, maybe its brown. From an information theory perspective, this is a lossy
channel, as the idea contains more information than the word.

While animals have certainly demonstrated ability to understand and mimic language to
a reasonable extent, humans are the only beings capable of implementing complex language.
You can talk to animals, but they won’t talk back. Some argue that language is central to
humanity’s evolutionary identity. As a species, or ability to communicate ideas is exactly
what makes us human. It wasn’t the upright posture, larger prefrontal cortex, opposable
thumbs, toolmaking, no. It was the ability for us to come to consensus and work together
on complex tasks. If I, as some paleolithic ape generate the idea “I go hunt mammoth”.
This idea is totally worthless, I go hunt mammoth the outcome is I get trampled. Instead
I communicate this idea and now its “we go hunt mammoth”, suddenly its more serious.
First we took down a mammoth, and second, we built a computer. Theres some steps in
between those two.

Since all ideas must be expressed as language, it was an old-world view that the study
of language itself was the only way to study ideas. The study of language was the study

6: Syntactic Structures-1



of everything. One of Chomskys accomplishments was to help separate these two. Syntax,
the structure of language, and semantics, the meaning of language, are not interchangable.

1.2 Syntactic Structures

The importance of Chomsky’s short monograph was not that he solved language in general,
but rather he came into someone elses house with more math than them. He came into
a very empirical field, and brought in an as theoretical as possible perspective. Using
relatively simple intuitive arguments, he was able to make true generalizations about what
is an incredibly complex system.

1.3 Chomskyan view of language

Consider a baby. It it not born speaking any language. Googoo gaga and so on. Totally
unintelligible. Although a baby is not born knowing any language, it somehow knows how
to learn a language. Airdrop that baby into a group of people speaking a language and as
it mentally develops, it will learn how to speak among them. This would be independent of
anything about the structure of the language. It would not necessarily learn in school what
nouns and verbs are in order to speak. Syntax is an innate aspect of language determined
by a “Universal Grammar”. There are biological conditions which shape the structure of
language. The way our brains have the wires and pipes cause limitations in what possible
structures language must take.

To study language, it is okay for us to limit ourselves to english. Languages share many
universal features. For example, delimination with a space. Have you ever thought about
why sentences come in lists and not trees or some other structure in which may not have a
kind of topological sort? All grammatical operations appear to be binary as well. The set
of grammatical sentences appears to be infinite L, but appears to be contructed recursively
from some sort of finite atomic pieces, like a basis. In english, that would be our alphabet,
Σ. Secondly, for any english specific artifacts we may encounter, there are almost certainly
analoguous issues in other languages.

As we develop a theoretical model for grammar, it is sufficient for us just to short the
ability to distinguish the grammatical from the ungrammatical. Such a device or structure
which can help us separate these two, can also help us generate new grammatical sentences.

1.4 The Independence of Grammar

Consider the following two sentences:

1. Colorless green ideas sleep furiously.

2. Furiously sleep ideas green colorless.

Let us study the first sentence. Certainly it is grammatical. Somehow in our brain
exists a distinguisher, and we can read this sentence and come to the consensus that it
is grammatically correct. Next of note is that the sentence is totally devoid of meaning.
What would the subject the sentence be? Ideas? and they somehow can sleep? and do so
furiously? Its colorless, yet green? It has no semantical value, and does not communicate
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any idea (besides perhaps confusion). This is a kind of counter example, and forces us to
separate syntax, the structure of language, from semantics, the meaning of language.

Second, note that the first sentence is grammatical, but the second one is not. The first,
simply by intonation and word pattern seems comfortable. It would be easier to remember
and recite. The second is ungrammatical, and troubling. Yet, these two sentences, the
frequency of sequential word choices is equivalent because one is a word reversal of the
other. These two sentences have been uttered equally likely in all of english, that is, a
negligible amount1. This is our second observation. The ability of a syntactic structure to
distinguish the grammatical from the ungrammatical must be independent of the sentences
proximity to english. The first being grammatical, and the second not. Any model based on
probability may be unable to distinguish these two based on this kind of frequency alone,
but we argue, must be able to. It is also quite likely that sentences you come across have
never been said before. Even the sentences you are reading now. Something like 15% of
Google’s daily searches have never been searched before.

1.5 English Contains some Regular Substructure

Natural languages are not formal formal languages, but we can apply similar arguments.
Here we show a substructure of english has some similar structure to a regular language. For
example, the following DFA2 can be used to model the formation of a substructure of english:

start
The

man

men

comes

come
old

We are not concerned with the study of finite languages, but of infinite ones decidable
by finite structures. Here, this decides an infinite language because it has a point of re-
cursion. It may be inappropriate to describe someone as “old old old old...”, but it is not
ungrammatical, it is a hyperbole.

1.6 English is Not Regular

First, recall our three non-regular languages

• {anbn | n ∈ N}

• {wwR | w ∈ Σ∗}
1It is ironic that Chomsky chose this sentence because it would be statistically infrequent, but by choosing

it as an example, he has made it very famous. See its own wikipedia page
2Chomsky calls this a Finite-State Markov Process (FSMP)
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• {ww | w ∈ Σ∗}

We show by an analogy, that there does not exist a DFA for a substructure of english.

Proof. Let S1, S2, ... be declarative sentences. Let S be the sentence “if Si, then Sj”. There
is no reason we may not substitute S into Si Observe that upon repetition of this n times,
we get

“(if)(if)(if)(if) . . .Si (then)(then)(then)(then) . . .Sj”

can we written as (if)nSi(then)
nSj , this is quite similar to our first known canonical non-

regular language. We proved that language was non-regular by pumping, and similarly
here, there would not exist a DFA for this substructure of english. Another good example
is the Dyck language, the set of balanced parenthesis. One would recognize if a sentence
had unbalanced paranthesis and distinguish it as ungrammatical. An an example, consider
“((hello there.)(((”.

1.7 Phrase Structure

It had been known for centuries of the recursive nature of language. How sentences can
be built from fragments, fragments from words, words from letters, and so on. Sentences
have a hierarchical structure, and this structure is governed by the rules from grammar.
Chomsky formalized these observations to justify what his next model of study was, and
why it was ideal. He defines something called a phrase structure, which is a generalization
of what we now call a CFG. For now, lets suppose phrase structures are just CFGs. We
can remark that this device is incredibly useful as generative model for language. Consider
the following model:

Sentence → Noun Phrase+Verp phrase

Noun Phrase → Article+Noun

Verb Phrase → Verb+Noun phrase

Articles → {a, the, etc.}
Noun → {man, men, ball, etc.}
Verb → {hit, took, etc.}

Here, we have a phrase structure for a declarative substructure of english. A production of
a sentence from our phrase structure can be expressed as a parse tree.

Sentence

NP

T

the

N

man

VP

V

hit

NP

T

the

N

ball
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Its notable here that a parse tree gives less information than a list of productions, as
just from the tree, you don’t know what order the rules were applied in.

1.8 Limitations of our Phrase Structure

Although we note that this generates grammatical sentences, it can also generate ungram-
matical ones. This example is with respect to singular and plural words.

1. “The man hit the ball.”

2. “A men hit the ball.”

The second sentence is clearly not grammatically correct.

Chomsky: “We must be able to limit the application of a rule to a certain context”

A context-free grammar is quite literally, free of context. If you have a production of N → {
nouns}, then you can substitute in any noun. Like mad libs, it may not be grammatical.
We want to consider applications of rules which are sensitive to context. A production can
only be applied if conditions are met on the part of the working string before and after the
substring we would insert. Comparison of language models:

Model Example rule

Regular grammars A → bE
Context-free grammars A → bCdEf . . .

Context-sentitive grammars xAz → xyz

Here, x, z ∈ (V ∪ Σ)∗. You can only make the substitution A → y when in the current
working string, A is preceded by x and followed by z. These types of rules are called
context-sensitive, because they are quite literally, sensitive to context. They are strictly
stronger than context-free grammars, and we will not spend any more time on them. For
our small piece of english we are studying, we can modify the phrase structure with context
sensitive rules to solve our issue with singular and plural words as follows.

NP1 → Tp +Np

NP2 → Ts +Ns

Ts → a

Tp → the

NPs → man

NPp → men

Here, Np, a non-terminal for plural nouns, cannot be preceded by Ts, singular articles. This
makes the ungrammatical production of “a men” impossible.

I highly suggest you read Syntactic Structures in full. This is a high level overview of
some of the simpler and early theorems made, and how they were argued.
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1.9 Further Reading

• Syntactic Structures by Noam Chomsky

• Poverty of the Stimulus

• How To Know What Words Mean - Troublehacking with Drew Cleary

2 Chomsky Normal Form

Given a word w and a grammar G, is w ∈ L(G)? This is surprisingly non-trivial. We say a
CFG is in Chomsky Normal Form (CNF) if it has productions only of the form:

A → BC

A → a

where the capital letters are any non-terminals, and the lower-case letters are any terminals.
AdditionallyB,C cannot be the start state. and S → ε ⇐⇒ ε ∈ L(G). Note that obviously
L (CNF ) ⊆ L (CFG). We have a process to convert any CFG into CNF form, meaning
that L (CFG) = L (CNF ).

1. Add a new start State S0 → S. Now every rule will not have the start state anywhere
on the RHS.

2. Delete and patch all A → ε rules. For example if you have rules R → uAv,A → ε,
you now have rules R → uAv | uv.

3. Remove all unit rules A → B (i.e. (A → B,B → C) = A → C

4. Convert rules of length greater than two into a chain of rules as follows. (A →
u1 . . . uk) → (A1 → u1A1, A2 → u2A2, . . . , Ak−1 → uk−1uk)

5. ∀a ∈ Σ, replace a with A using A → a.

Steps three and four may need to be repeated many times because applying one patch may
introduce a need for another.

2.1 Advantages of CNF

Lets prove that if a word of length n is produced by a grammar in CNF, it takes exactly
2n− 1 productions. Lets work backwards.

w1...wn
∗⇐= 1 W1...Wn

∗⇐= 2 S

• The last productions (1) goes from n terminals to n non-terminals. At each produc-
tion, exactly one non-terminal is replaced by exactly one terminal, so this takes n
productions.
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• For (2), to go from n non-terminals to one terminal, our start terminal, requires n−1
productions. Every rule of a grammar in CNF takes one non-terminal, and adds two.
So for each production, if non-terminals are added, a production adds exacly one.

Combined, we see that a grammar in CNF form will take exactly 2n − 1 productions to
produce a word of length n. This solves our acceptance problem. Convert your grammar
to CNF, compute all words produced after 2n− 1 productions, and your candidate word is
in this list ⇐⇒ w ∈ L(G). Consider the following conversion of a general CFG to one in
CNF.

S → aSb | ε
S0 → S, S → aSb | ε
S0 → S | ε, S → aSb | ab
S0 → aSb | ab | ε, S → aSb | ab
S0 → aX | ab | ε, S → aX | ab, X → Sb

S0 → AX | AB | ε, S → AX | AB, X → SB, A → a, B → b

Lets verify that {anbn | n ∈ N} takes 2n−1 productions. That aabb takes seven productions.

S =⇒ AX =⇒ ASB =⇒ AABB =⇒ aABB =⇒ aaBB =⇒ aabB =⇒ aabb
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Lecture 7: Pushdown Automata

Lecturer: Abrahim Ladha Scribe(s): Rishabh Singhal

1 Introduction

We mentioned previously how if we had a stack data structure, we could parse arithmetical
expressions, like a classic data structures assignment. Lets do that. We are literally going
to give an NFA a stack. We say a Pushdown Automata (PDA) is a tuple (Q,Σ,Γ, q0, δ, F )

• Q = {q0, . . . , qk} our set of statestates

• Σ = input alphabet

• Γ = Stack alphabet. By convention, we will usually set Γ = Σ ∪ {$}, where $ is a
special symbol we denote as the stack canary.

• q0 ∈ Q is the start state

• δ : Q× (Σ ∪ {ε})× (Γ ∪ {ε}) = P(Q× (Γ ∪ {ε})) our transition function

• F ⊆ Q is the set of final or accepting states.

Notice that we have basically done as we said we would do. We just augmented an NFA to
give it a stack. The transition function works as follows. You go from some state, optionally
read a symbol off the input, and optionally pop the top of the stack. Then you transition
to a new state and optionally push something onto the stack. When you see a transition of
the form a, b → c, you read a from input, pop b and push c onto the stack. Note that our
defined PDA is explicitly nondeterministic. Deterministic PDAs exist, but unlike DFAs and
NFAs, they are explicitly weaker. We will not cover them. Lets give some programming
analogies to the types of transitions possible.

• ε, ε → ε We read nothing from the input, pop nothing, and push nothing. This means
we really only change states, so this acts like an ε-transition in an NFA.

• a, ε → a; b, ε → b We read a, b off the input, popped nothing, and pushed a, b respec-
tively. We would only push exactly what we read, so this would push the input to the
stack. If it was in a self-loop, it would push the entire input to the stack.

• ε, a → ε; ε, b → ε Read nothing from the input, pop something, and push nothing.
This would pop the top of the stack, whatever it may be. In a self-loop, it would
dump the stack.

• a, b → b Read a off the input, pop b off the stack, then push b right back. This allows
us to essentially transition off of ”peeking” the top of the stack. We cannot read the
top of the stack without popping it, but we can simulate this as popping it and then
pushing it right back.
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2 Examples

2.1 {anbn | n ∈ N}

While reading a’s off the input, we are going to push them. If we read a b, we start reading
b’s off the input, matching them to a’s popping off the stack, and we accept only if we read
as many b’s as we previously pushed a’s. We don’t have an inbuilt mechanism to determine
if the stack is empty. Thats why we begin almost every PDA by pushing $. Then if we ever
see our canary again, we know the stack is empty.

q0start q1

q2 q3

ε, ε → $

a, ε → a

b, a → ε

b, a → ε

ε, $ → ε

Note that we must also accept ε so the start state is marked as accepting.

2.2 {wwR | w ∈ Σ∗}

As you might suspect, our PDA will be similar, however before we could start matching
the second half of our string by seeing a b. Here, we don’t have that privelige. We can still
solve it by nondeterministically guessing the midpoint of the input!

q0start q1

q2 q3

ε, ε → $

a, ε → a

b, ε → b

ε, ε → ε

a, a → ε

b, b → ε
ε, $ → ε
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Note that all computation paths which incorrectly guess the midpoint of the string would
implicitly reject. We also need not mark the start state as accepting as there exists a non-
trivial computation path to accept ε. We would push the canary, epsilon transition, pop
the canary, and accept.

2.3 Dyck Language

Recall that the Dyck language is the set of balanced paranthesis. You decide this language
trivially with a counter. You increment your counter for every open you see, and decrement
it for every close. If your counter ever goes negative, you reject. If your counter ends with
anything other than zero, you reject. We will use the stack more simply here, as just a
unary counter.

q0start q1 q2
ε, ε → $

(, ε → a

), a → ε

ε, $ → ε

Here Σ = {(, )} and Γ = {a, $}. Just for clarity, I chose Γ to be something else, as it doesn’t
particularly matter what we count with.

2.4 {w ∈ Σ∗ | #a(w) = #b(w)}

This will be similar to two PDAs we have seen, the Dyck language, and anbn. However,
instead of a positive counter, we would need a counter which could occasionally be negative.
Different symbols on the stack will be used to represent the surplus in one direction or the
other.

q0start q1 q2

q6

q3

q5

ε, ε → $ a, ε → a; b, ε → b

a, b → ε

b, a → ε

a, a → a; a, $ → $

ε, ε → a

b, b → b; b, $ → $

ε, ε → b

ε, $ → ε

You should note we could do this PDA far simpler if we were allowed to push more than
one symbol onto the stack per transition. We will show how to do this next lecture.
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2.5 {aibjck | i, j, k ∈ N, i = j or j = k}

Since the definition of the language contains an or, why don’t we make two PDAs for each
case, and then use nondeterminism to join them together.

q0start q1

q2 q4q6

q3 q5

ε, ε → $

a, ε → a

ε, ε → ε

ε, ε → ε

b, a → ε

ε, $ → ε

c, ε → ε

b, ε → ε

ε, ε → ε

c, a → ε

ε, $ → ε

Although we won’t show it, this PDA requires nondeterminism. There is no DPDA to
decide this language.

3 L (NFA) ⊊ L (PDA)

We can convert any NFA into a PDA by simply preserving the topology of the states, and
ignoring the stack. Some for some qj ∈ δ(qi, a) in our NFA, we would have (qj , ε) ∈ δ(qi, a, ε)
in our PDA.

qi qj
a qi qj

a, ε → ε

Our containment was strict because we gave PDAs for many languages we know not to
be regular. In fact, all the examples we gave were languages we know to be context free.
Next time we will show that L (PDA) = L (CFG).
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Lecture 8: L (CFG) = L (PDA)

Lecturer: Abrahim Ladha Scribe(s): Samina Shiraj Mulani

1 L (CFG) ⊆ L (PDA)

Recall the grammar with the following production rules S → aSb | ε. which produces the
language {anbn | n ∈ N}. As we produce strings, we get intermediate strings which are
called “working strings” (example w.r.t aforementioned language - aSb, aaaSbbb). Once the
working string does not have any non-terminals, thats the string produced by our choice
of productions. We are trying to construct a PDA given a CFG. Consider some working
string in the grammar. We will simulate part of it on the stack and part on the input. If
we have a working string like aaaSbbb, anything that comes before the first non-terminal
must be the prefix of the produced word. We don’t need to keep this on the stack, but can
just match it to the input.

Input → aaa
...abbbb Stack → Sbbb$

Working String → aaa
...Sbbb

• If top of the stack is a terminal, we pop it and advance input if it matches.

• If the top of the stack is a non-terminal, we pop it and non-deterministically choose
its production and push it.

Observe that pushing a nonterminal’s production on to the stack may involve pushing more
than 1 symbol. We generalize and say that we can push w1w2...wn on to the stack by
simulating the insertion in the PDA by adding more states as shown. a, b → w1...wn would
be

q0 q1 q2 qn−1 qn
a, b → wn ε, ε → wn−1 ε, ε → w1

So, if we have a, b → abc, top of the stack is now a. You should remember this.

1.1 CFG to PDA conversion

Our shortcut here allows us to represent the PDA for any CFG only using three states. If
we didn’t have our shortcut, each transition would need states for the length of the RHS of
the production.
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q0start q1 q2
ε, ε → S$ ε, $ → ε

a, a → ε ∀a ∈ Σ

ε,A → w ∀ productions of the form A → w

If I asked you to write a program to simulate a CFG, this might be non-trivial. Its interesting
to note that actually the PDA is easier. Both PDAs and CFGs are nondeterministic, and
we can have the nondeterminism of one simulate the nondeterminism of the other. The
nondeterministic choice of productions becomes a nondeterministic choice of transitions.

1.2 Example

{ambn | m ≥ n}
One correct CFG may be
S → AT
A → aA | ε
T → aTb | ε

Here, A produces like a∗, and T produces like anbn matching. So S → AT will give us
ambn with m ≥ n.

q0start q1 q2
ε, ε → S$ ε, $ → ε

a, a → ε
b, b → ε

ε, S → AT
ε,A → aA
ε,A → ε

ε, T → aTb
ε, T → ε

Lets do a computation of aab to show the PDA accepts this grammar. Here, the under-
line of the input represents the symbol we are looking at, and the top of the stack is the
leftmost.

Input → aab aab aab aab aab aab aab aab aab
... aab

Stack → S$ AT$ aAT$ AT$ T$ aTb$ Tb$ b$ $ empty stack

2 L (PDA) ⊆ L (CFG)

This proof is far harder than the previous one. Its easy to program a PDA to simulate a
CFG. We will see its harder to “program” a CFG given a PDA. Instead of just doing an
example, lets do a rigorous proof of correctness.
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2.1 Make it nice

First, we have to make P nice, by modifying it in the following three ways.

1. P only has one accept state.
This trick also works for NFAs. Make a new final state, make all old accepting states
as non-accepting, and then epsilon transition from all old accepting states to our single
new one. This lets us assume there is only one accept state.

2. P accepts only with an empty stack.
Simply make sure we begin and end with pushing and popping $. The old accept state
should dump the stack before popping $ to accept. This lets assume the computation
ends how it begins, with an empty stack.

3. Each transition pushes or pops but not both.
Suppose we had a transition like a, b → c. We can turn this into two transitions like
a, b → ε and ε, ε → c. This lets assume each move of the PDA either pushes or pops
but not both.

2.2 High level idea

For each p, q ∈ Q, make Apq to represent strings which could take our PDA starting at state
p and an empty stack, and ending on state q in an empty stack. The start variable should
be A0f where q0 is the start state and qf is the only final state. Since we are going from
an empty stack to an empty stack, the first move must be a push and last move must be
a pop. If the stack was never fully emptied from p...q computation, then the first symbol
pushed must be the last symbol popped, call it u. Let r, s be the next states making the
computation path look like pr...sq. Here, r is the next state after p, and s is the state
preceeding q. Say a is whats first read of the input, and z is whats last read, resulting in
Apq → aArsz.

p r s q
a, ε → u z, u → ε

If the stack was ever emptied from p...q computation, we handle this as ∀p, q, r Apq →
AprArq, where r would have been the state where the stack was empty. If it was empty at
no other point, we can then inductively delegate Apr, Arq back to the first case. For PDA
P = (Q,Σ,Γ, δ, q0, F = {qf}), we make the following CFG:

• ∀p, q ∈ Q we add Apq ∈ V (V = set of nonterminals).

• S = A0f

• ∀p ∈ Q,App → ε

• ∀p, q, r ∈ Q,Apq → AprArq

• ∀p, q, r, s ∈ Q, u ∈ Γ, a, z ∈ Σ∪ {ε}, add rule Apq → aArsz if there exist transitions in
δ as defined previously like
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p r s q
a, ε → u z, u → ε

Given a PDA P , we have constructured a grammar G. To prove the correctness of this
construction, we need to prove:

Apq
∗⇒ x ⇐⇒ x brings P from p (empty stack) to q (empty stack).

2.3 ( =⇒ ) direction

Given that Apq
∗⇒ x, we want to show that x brings P from p (empty stack) to q (empty

stack). We proceed by proof by induction on the length of the derivation.
Base case: Derivations of length one
Out of all the rules, only one has no nonterminal on the right. There is only time for 1
production and that production must produce a string. App → ε. It is true that ε trivially
brings P from p (empty stack) to p (empty stack).

Induction Hypothesis: Assume if Apq
∗⇒ x in ≤ k derivations, then x brings P from p

(empty stack) to q (empty stack).
We have to show: True for derivations of length k + 1
Assume Apq

∗⇒ x in k + 1 steps. We have two cases.

1. First step in our derivation is of the form Apq → aArsz. By induction hypothesis, for

x = ayz, Ars
∗⇒ y in ≤ k steps, so y must bring P from r (empty stack) to s (empty

stack). By construction we only have the rule Apq → aArsz if:

p r s q
a, ε → u z, u → ε

So ayz brings P from p (empty stack) to r to s to q (empty stack). If y brings P from
r (empty stack) to s (empty stack), then certainly it can bring P from r (just u in

stack) to s (just u in stack). This means that Apq
∗⇒ x and ayz = x brings P from p

(empty stack) to q (empty stack).

2. The first step in our derivation is of the form Apq → AprArq. By induction hypothesis,

x = vw, Apr
∗⇒ v, Arq

∗⇒ w in at most k steps. So v brings P from p (empty stack) to
r (empty stack) ans w brings P from r (empty stack) to q (empty stack). So, clearly
vw = x brings P from p (empty stack) to r (empty stack) to q (empty stack).

2.4 ( ⇐= ) direction

We want to show that if x brings P from p (empty stack) to q (empty stack), then Apq
∗⇒ x.

We proceed by proof by induction on length of computation.
Base case: Computation of zero steps.
A computation of zero steps means we don’t have time to switch states, so consider any
such x with App

∗⇒ x. Zero steps also means that there is no time to read any input. So
x = ε. But, we have the rule App → ε as desired.
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Induction Hypothesis: Assume its true for computation of length ≤ k, that if x brings
P from p (empty stack) to q (empty stack) in ≤ k computation steps then Apq

∗⇒ x
We have to show: True for computations of length k + 1.
Let x bring P from p (empty stack) to q (empty stack) in k + 1 steps. We have two cases.

1. Suppose the stack is only empty at the beginning and end. So the first symbol pushed
must be the last symbol popped. By our construction for x = ayz

p r s q
a, ε → u z, u → ε

By induction hypothesis since y brings P from r (empty stack) to s (empty stack),

then Ars
∗⇒ y and we have the rule Apq → aArsz. So, Apq

∗⇒ x.

2. During the computation of length k + 1, the stack is empty at some middle point,
lets say, at state r. The computations from p to r and r to q take at most k steps.
By induction hypothesis, for x = vw, Apr

∗⇒ v and Arq
∗⇒ w. Since we have the rule

Apq → AprArq, Apq
∗⇒ vw = x.

3 Remarks

Recall that we say a language is context-free if there exists a CFG to produce it. We may
now also say that a language is context-free if there exists a PDA to decide it. The PDAs
decide exactly the same languages that CFGs produce. We did not give a formal proof
that regular grammars produce only regular languages, but regular grammars are a strict
superset of those which are context-free. This proof is an alternate way to see that the
regular languages are also produced by context-free grammars. Every regular language can
also be decided by a PDA, which is equivalent to some CFG.

This proof had many parts. We have to indidividually prove L (PDA) ⊆ L (CFG)
and L (CFG) ⊆ L (PDA). We really only did half. For L (PDA) ⊆ L (CFG), we gave a
construction of a grammar G from a PDA P , and then we had to show L(G) ⊆ L(P ) and
L(P ) ⊆ L(G). Then each of those had their own cases.
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Lecture 9: The Pumping Lemma for Context Free Languages

Lecturer: Abrahim Ladha Scribe(s): Rishabh Singhal

1 Introduction

Lets give a high level picture of the space of languages as we know it so far. In the beginning,
there was only the regular languages which had things like a∗. Next we found a class of
languages called the CFLs which included things which were specifically not regular, like
{anbn | n ∈ N}. Today, we will show the existence of languages outside of L (CFG), with
our first example being {anbncn | n ∈ N}.

anbncn ∈ L (?)

anbn ∈ L (CFG)

a∗ ∈ L (NFA)

We will prove that L = {anbncn|n ∈ N} ̸∈ L (CFL), but for now, lets just assume so.
Consider the following two languages. L1 = {ambncn |m,n ∈ N} and L2 = {anbncm |m,n ∈
N}. Certainly they are context-free, since we can produce grammars for each. Here is the
grammar for L1:

• S → AT

• A → aA | ε

• T → bTc | ε
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And similarly, for L2:

• S → RC

• C → cC | ε

• R → aRb | ε

However, notice that L1 ∩ L2 = {anbncn | n ∈ N}. The number of a’s equals the number
of b’s, but then the number of b’s must equal the number of c’s. So transitively, we get our
triple threat language.

Assume to the contrary CFLs are closed under intersection. Since L1, L2 are CFLs, so
should be L1 ∩ L2. But L1 ∩ L2 = {anbncn | n ∈ N} a language we are going to pump
and prove to not be context-free, a contradiction. Assume to the contrary CFLs are closed

under complement, then L1, L2 would be context-free, and so would L1 ∪ L2 = L1 ∩ L2.
However, we will prove it is not, a contradiction. CFLs are closed under union, Kleene star,
and concatenation, but not under intersection or complementation.

2 Parse Trees

Recall that parse trees exist. This is what we will do our combinatorial “pumping” on.
Any grammar is finite but can produce arbitrarily long words. Consider the production of a
super long word with a huge parse tree. If the string is long enough such that a non-terminal
is repeated twice on some path from the start non-terminal, I claim we can perform the
following surgery on the parse tree. We may cut and copy the different subtrees with our
repeated non-terminal. If some uvxyz ∈ L, then uvixyiz ∈ L as well.

Now lets derive the exact conditions for this to be true. Let b be the maximum length
of the RHS of the largest rule of G. For any parse tree of G, a single step from the start
has at most b children. Two steps has at most b2, and so on. It may help to recall the
derivation of the Master Theorem from Algorithms. If the tree height is h, the maximum
length of the string it can derive is |w| ≤ bh. Conversely, if a generated string has length
bh + 1, its parse tree has height h+ 1. For convention set p = b|V |+1, so our parse tree has
height greater than or equal to |V |+1. Its true that we could satisfy this with just b|V |+1,
but since b|V |+1 > b|V | + 1, our tree height is still ≥ |V | + 1 and we will need this later.
Since G only has |V | non-terminals, some non-terminal is repeated twice (or more) by the
pigeonhole principle along a path from the start non-terminal.

• We want to produce a string such that its parse tree has height sufficient to be pumped,
so we may choose any |s| ≥ p.

• For s = uvxyz as shown in the figure, we want v, y to both not be empty, so we may
pump something nontrivial. We condition this as requiring |vy| > 0.

• There may be many more repeated non-terminals along the height of our tree, but we
want to focus on to the last repeated one. In the picture we have R

∗⇒ vxy. We want
this tree to be at most |V |+ 1 high, so we require that |vxy| ≤ b|V |+1 = p.
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3 Recipe of Pumping Lemma

Recall that like the pumping lemma for regular languages, it is easy to miss one case here
or there, or misapply it. Following this recipe exactly is the best way to ensure your proof
is correct.

1. Assume the contrary L is context-free with pumping length p.

2. Choose some s ∈ L, |s| ≥ p

3. List cases ∀u, v, x, y, z with s = uvxyz subject to |vxy| ≤ p and |vy| > 0.

4. For each case choose an i such that uvixyiz /∈ L

5. Conclude that the language must not be context-free.

Also unlike the pumping lemma for regular languages, we are not going to be able to
list out every case mathematically, using superscripts as lengths. Instead, you have to think
logically. Construct several “meta-cases” in which each sub-case is easy to argue. The
meta-cases should be defined so that its obvious any case must fall into one meta-case or
the other.

4 Examples

Lets do an example.
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4.1 {anbncn | n ∈ N}

• Assume to contrary L is context-free with pumping length p.

• Choose s = apbpcp. Certainly s ∈ L and |s| ≥ p.

• We have two general cases:

– v and y each contain only one type of symbol. There is three of {a, b, c},
only two of the {v, y}. So uv2xy2z /∈ L cannot contain an equal number of a’s,
b’s, and c’s. Some letter will not increase.

– If either v or y contains more than one symbol. then uv2xy2z contains
symbols out of order, and thus, not be in our language.

• It follows that L is not a CFL.

Lets give some remarks about the proof. First, for choosing s, before for regular lan-
guages, a bad choice of s just meant we had many cases but it could still be correct. For
pumping context-free languages, a bad choice of s likely will not allow you to even complete
the proof. Many obvious or first choices end up being pumpable, when we want to show
they are not. Try to choose a string which is barely in the language. One where even the
smallest perturbation brings it out. Secondly, Notice that we didn’t really have to apply
the fact that |vxy| ≤ p. This is sometimes too fine-grained. This would eliminate the case
where v may contain a’s at the same time y may contain c’s. Our meta cases are so general,
these are absorbed. Finally, notice how we defined our meta cases as logical complements
of each other. Either both v and y contain one symbol, or maybe one of them is a mix of
symbols. Any possible cases must fall into one of those two huge general categories. If we
tried to do it any other way, we may get dozens of cases, many of which are identical.

4.2 {aibjck | 0 ≤ i ≤ j ≤ k ∈ N}

• Assume to the contrary that L is regular with pumping length p. Choose s = apbpcp.
Clearly s ∈ L and |s| ≥ p. We have a few cases

• both v and y are of only one type of letter. We need to pump up or down
depending upon what the letters actually are, so we divide into further sub cases.

– If a’s do not appear we pump down. Choose i = 0, so uv0xy0z has more a’s than
b’s.

– If b’s do not appear:

∗ But a’s appear choose i = 2, so uv2xy2z has more a’s than b’s.

∗ But c’s appear choose i = 0, so u v0x y0z has more b’s than c’s.

– If c’s do not appear choose i = 2, so uv2xy2z has more a’s or b’s than c’s.

• if v or y contain more than one type of symbol we choose i = 2, as uv2xy2z
will be out of order.

• We conclude that L is not CFL
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Convince yourself that the cases listed are total. By out of order, we mean for example
that v = akbj . Then uvv... = ap−kakbjakbj ... = apbjakbj ... so somehow this string contains
a’s after the b’s, and wouldn’t be in the language.

4.3 {ww | w ∈ Σ∗}

There are many bad choices of s for this language. Choosing a few may lead you to a good
one. I have the premonition to know we are going with a good choice of s here.

• Assume to contrary L is context-free with pumping length p. choose s = 0p1p0p1p

and confirm s ∈ L and |s| ≥ p.

• If vxy is all in the first or last half, Choose i = 2. let uv2xy2z = w1w2 with
|w1| = |w2|. If vxy was in the first half, w1 begins with 0 and w2 begins with 1. If
vxy was in the second half, w1 ends with 0 but w2 ends with 1. For either of those
w1 ̸= w2.

• vxy straddles the midpoint. Pump down so uv0xy0z = 0p1k0j1p where k, j cannot
both be p. So now 0p1k0j1p ̸= ww unless k = j = p and this is impossible since
|vy| > 0.

• We conclude that L is not CFL
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Lecture 10: Turing Machines

Lecturer: Abrahim Ladha Scribe(s): Michael Wechsler

Turing machines are so interesting, every lecture for the remainder of the course will be
about Turing machines. I want this or that interesting sub-topic to be its own lecture, so that
leaves us with nothing for today except definitions and programming. Recall the limitations
of a PDA. You pop something out the stack, its gone into the ether, forever. What if we
could iterate over our memory structure in a non destructive way. Our motivation is then
to just give a DFA a tape.

1 Definitions

A Turing machine is a tuple: (Q,Σ,Γ, δ, q0, qa, qr) where:

• Q : finite set of states

• Σ : finite input alphabet

• Γ : finite tape alphabet

– ∈ Γ, this is the symbol for a blank space on the tape1

– ̸∈ Σ

– Σ ⊊ Γ

• δ : Q× Γ→ Q× Γ× {L,R} is our (deterministic) transition function.

• q0 ∈ Q : denoted start state

• qa, qr ∈ Q : denoted accept and reject states

1For latex, you may use either textvisiblespace or sqcup
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A Turing Machine is initialized with w1w2...wn on the leftmost cells of the tape, and the
tapehead on w1. All other cells initialize to .

w1 w2 . . . wn →∞

q0

1.1 Configurations

A configuration of a Turing Machine is a string encoding of an instantaneous description,
or snapshot, of a Turing Machine. We say a configuration C yields C ′ if C ′ follows C after
one step of the transition function.. We write this as C ⊢ C ′. The entire description of the
Turing machine at some moment is just the contents of the tape, the current state, and the
position of the tape head. We encode these together as one string as follows.

Consider the tape below

← a b c d →

qi

If δ(qi, c) = (qj , c
′,R), then abqicd ⊢ abc′qjd

← a b c′ d →

qj

If δ(qi, c) = (qj , c
′,L), then abqicd ⊢ aqjbc

′d

← a b c′ d →

qj

⋆ NOTE: ⊢ means yields

Notice that for sequential configurations, only a small local portion of the configuration is
changed. The initial configuration of any Turing machine is always q0w1 . . . wn. We may
define the accepting and rejecting configurations appropriately, if they contain the accept
or reject state. We say a Turing machine accepts w1 . . . wn if there exists a sequence of
configurations

C0 = q0w1 . . . wn

Ci ⊢ Ci+1

ck is accepting
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1.2 Create a Turing Machine, M , for {w#w | w ∈ Σ∗}

Idea
mark checked as x abaa...#abaa...
skips xs to keep checking xxaa...#xxaa...

1.2.1 Pseudocode

M on input w:

1. mark symbol, keep track in states

2. loop right until #

3. loop past any x

4. if last marked = head:

(a) mark

5. loop left until #

6. loop past any unmarked

7. reset to first unmarked (repeat from step 1)

8. if no symbols besides x before hash remain:

(a) if no symbols besides x after hash remain:

i. accept

9. reject

1.2.2 State Diagram

We can attempt to give a state diagram for this language. We will omit qr, as it gets
too messy. Undefined transitions in this diagram, you should understand to mean implicit
rejection. Note how we have two branches, if we mark a or b. We use the states of the
machine to keep track of what we have seen.
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q0start

qa

a→ x,R

b→ x,R

#→ #,R

a→ a,R

b→ b,R
#→ #,R

x→ x,R

a→ x,L

x→ x,L
#→ #,L

a→ a,L

b→ b,L

x→ x,R

a→ a,R

b→ b,R
#→ #,R

x→ x,R

b→ x,L

x→ x,R

→ ,R

2 Computation

Unlike previous models, Turing machines do more than just decide languages. They can
also compute! A function f : Σ∗ → Σ∗ is Turing-Computable (or just computable) if
there exists a Turing Machine for all inputs w, which when initialized with w on the tape,
halts with just f(w) on its tape.

2.1 f : Bit Flips

⋆ NOTE: qh is the halt state (accepting and rejecting do not matter here)

q0start qh

0→ 1,R

1→ 0,R

→ ,L

Example: Configurations for input 101

− q0101

− 0q001

− 01q01

− 010q0

− 01qh0 HALTS in 4 steps
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2.2 Turing Machines do NOT have to halt

q0start

a→ a,R

b→ a,R

→ a,R

The Turing Machine that writes a in every
cell forever. Regardless of what it sees on
its tape, its forever will march right, never
stopping.

2.3 Successor Function: S(x) = x+ 1

2.3.1 Unary

q0start qh

1→ 1,R

→ 1,L

We begin with 1x on the tape Halt with 1x+1.
The idea is we just get to loop to the end and
toss a stick onto the pile.

2.3.2 Binary

q0start

qh

0→ 0,R

1→ 1,R

→ ,L

1→ 0,L

0→ 1,R

For simplicity suppose the input is always
given with a leading zero. We begin on the
left on the input, so first we move all the
way to the right. When adding 1 in binary,
we loop from the right zeroing out all 1s until
we find the first 0 and make it a 1.

2.4 Addition of 2 Numbers

q0start qh

1→ 1,R

#→ 1,R

1→ 1,R
→ ,L

1→ ,L

add(x, y) = x+ y. Lets begin with 1x#1y on
the tape. Halt with 1x+y on the tape. The
simplest idea is to replace the # with a 1 and
remove the last 1 at the end. It would be
challenging, but convince yourself you could
give a Turing machine for addition in binary.
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3 Decidability vs Recognizability

Recall, a function f : Σ∗ → Σ∗ is Turing-Computable (or computable) if there exists
a Turing Machine for all inputs w, which when initialized with w on the tape, halts with
f(w) on its tape.

Additionally, a language, L, is Turing-Decidable (or just decidable or recursive) if there
exists a Turing Machine, M , such that

• w ∈ L ⇐⇒ M accepts w

• w ̸∈ L ⇐⇒ M rejects w

Notice that for every input, a decide always halts. A language, L, is Turing-Recognizable
(or just recognizable or recursively-enumerable) if there exists a Turing Machine, M , such
that

• w ∈ L ⇐⇒ M accepts w

• w ̸∈ L ⇐⇒ M rejects w or gets stuck in a loop

We allow a recognizer to loop on some inputs. If the answer is supposed to be yes, it must
always halt and accept. If the answer is suppose to be no, then it may halt and reject,
or loop. It is clear to see that every decidable language is also recognizable, but is every
recognizable language also decidable? We shall see.
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Lecture 10: Church-Turing Thesis

Lecturer: Abrahim Ladha Scribe(s): Rishabh Singhal

1 Introduction

The Church-Turing Thesis cannot be proved. Most agree that it is some kind of definition
or worse, a “working hypothesis”. Here, we will give the closest thing to a proof possible.
Recall the narrative of our class. First we did regular languages, that was level one. We
pumped out of those to get some context-free languages, that was level two. Now we are
on level three, Turing machines. The Church-Turing Thesis essentially says that there is no
level four. Our argument has two parts:

(I.) There is no computing device strictly more powerful than the human mind.

(II.) Turing Machines are equivalent in power to the human mind.

Together, these imply that a Turing Machine, although incredibly simple, is an excellent
choice for us to reason about computation. A philosophical argument is unlike a proof. We
want to make a convincing argument of some statement. The way we will do so is make
atomic jumps, each convincing, then argue that the composition must be convincing.

2 Part I: Our Own Limits

Suppose our space of the languages looks like the following:

L (NFA)

)
L (CFG)

)
... L (Human)

)
L (?)

where L (Human) is the set of languages recognizable by a human. It’s a pretty big
class. If I give you a description of a language and a word, and you can tell if that word
is in the language, then that language is in L (Human). Its not even yet clear if there are
languages outside of this class. Could something exist with L (Human) ⊊ L (?) Our first
observation is that if it existed, then we could not build it. Otherwise, we could understand
it. Anything humans have managed to build, they do by understanding it. Even if we do
not understand why some things happen, we understand what happens. So suppose then
it is somehow an Alien device.

Assume to the contrary this alien device exists in a useful way and L (Human) ⊊
L (Alien)1. Then there does not exist a simulation of L (Alien) ⊆ L (Human). I claim
that it it is then unfathomable. It is beyond our comprehension and therefore useless. A
contradiction.

1If this computer wasn’t strictly stronger, but its power somehow orthogonal, we could augment the alien
computer with a human counterpart creating a strictly more powerful computer.
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Figure 1: Successive simplications of computation as made in the Direct Appeal to Intuition

Note how we really couldn’t argue that such a computer couldn’t exist. Only that
we couldn’t build it, or it would have no effect on us in any measurable, meaningful, or
interactive way. If something exists in no way which is fathomable, it doesn’t make sense to
even discuss it, like an agnostic God. The core of our argument here is that we have been
able to simulate every computer so far in our head. Given a DFA and a word, you can run
the DFA on the word in your mind. Given psuedocode, you can follow along line by line.
If there was a device which we couldn’t do this with, it may as well not exist relative to us.

3 Part II: The Direct Appeal to Intuition

These notes have been typeset separately: https://ladha.me/files/fancy-turing-notes.pdf

4 Church Turing Thesis

We now give our statement of the Church-Turing Thesis. For any kind of computation
model, mechanical process, decision procedure C,

∀C L (M) ⊆ L (TM)

Its useful to rephrase this as
∄C (TM) ⊊ L (C)

In human words, the Turing machine is the ultimate computer. The entire complexity and
confusion of the mind, at least in our framework of decision problems, can be simplified to
the humble Turing machine. This pathetic three button typewriter is equivalent in power
to any realizable computer, and there is no greater. It is the supreme.

5 Evidence

We will now show a more traditional argument in favor of the Church-Turing Thesis. We
will attempt to generalize the Turing machine. We will show that each generalization is
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infact, just equivalent.

5.1 Turing machine with Stay

Consider Turing machines with a stay instruction. Instead of moving either left or right,
we allow the tape head to remain on the same cell. Its transition function would be defined
like:

δ : Q× Γ→ Q× Γ× {L,R, S}

It is obvious that L (TM) ⊆ L (stayTM). Let’s prove L (stayTM) ⊆ L (TM). If a
Turing machine with stay has a normal L,R move, we leave it alone. If a Turing machine
with stay has a S move, we can simulate it as a sequence of L,R moves. Specifically we
will choose to move right, then back left2.

qi qj
a→ b, S

qi q qj
a→ b, R a→ a, L; b→ b, L

5.2 Turing machine with Two Way Tape

Our Turing machine’s tape is only infinite in one direction, so lets generalize it to be infinite
in two. This can be called a bidirectional, doubly infinite, or two way tape.

←∞ a b c d ∞→

qi

It is true that L (TM) ⊆ L (2wayTM), but the simulation needs an extra sentence.
We put our one way tape on the two way tape and add a special marker leftmost of our
tape. If we ever read it, we force ourselves right. Now lets show L (2wayTM) ⊆ L (TM).
There were many excellent simulation suggestions in class, but the elegant one is to just
fold the tape in half! Here we extend our tape alphabet to cover pairs as so.

Γ2 =

{
a

b
| a, b,∈ Γ

}

If you are in the right half of the tape, the transition function will essentially ignore the
bottom half of the symbol. If we attempt to move into the left half, we start ignoring the
tops and looking at the bottoms. We also flip every L,R move.

2The only reason we don’t move left then right is the case we are on the leftmost square.
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Figure 2: Folded tape in half, from the Arora-Barak book

Figure 3: A Three tape Turing machine being simulated on a single tape, from the Sipser
book

5.3 Multi-Tape Turing Machine

If you think about it, the negative half of a bidirectional tape is like a second tape. Lets
define a Turing machine with multiple tapes. A multi-tape Turing machine is just that. It
has k tapes it may read, right and move on all independently. Its transition function would
look like

δ : Q× Γk → Q× Γk × {L,R}k

At some state, it will read the position of its k tape heads, makes k writes, and moves each
head either left or right independently. Certainly L (TM) ⊆ L (kTM) by simply ignoring
all tapes except the first one.

We want to show L (kTM) ⊆ L (TM). In order to do so, we are going to simulate the
k tapes on a single tape. We initialize our single tape as

#ẇ1...wn#˙#˙#˙#˙#...#˙#
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The dot represents the position of that tape head over its tape. As we simulate a read, write,
move of each tape head, we will scan over our tape making the appropriate adjustments.
If we need more space than allocated, we pause or simulation, enter a shifting subroutine,
insert blanks appropriately, and then continue. What was essential for this simulation was
that at any time stamp, only a finite amount of space has been used. A Turing machine
cannot use the infinite nature of the tape in any useful way.

5.4 Nondeterministic Turing machine

A nondeterministic Turing machine is defined exactly as you might think. At some state
reading some symbol, there are more than one outgoing transitions which could be taken.
There exists more than one computation path. Its transition function would be defined as

δ : Q× Γ→ P(Q× Γ× {L,R})

Its certainly true that L (TM) ⊆ L (NTM) as a nondeterministic Turing machine is simply
a generalization of a Turing machine. We now show the reverse way, that L (NTM) ⊆
L (TM).

We can view a nondeterministic computation like a rooted tree. Each node in this
computation tree can be represented by a configuration, with the initial configuration rep-
resenting the root, q0w1...wn. Our deterministic simulator is going to attempt to search
this tree for an accepting computation, if one exists. If our nondeterministic machine has
some accepting configuration in this tree, then there exists an accepting computation path
and this computation path halts. Our deterministic simulator will find this accepting con-
figuration, and also halt. If our nondeterministic machine has no accepting configuration
in this tree, then on all computation paths it either rejects or loops. So our tree may go on
forever. Similarly, our deterministic simulator will halt or search the tree forever.

Recall the many tree traversal algorithms. An initial idea is to use DFS: Depth first
search. This is not a good idea. If the first computation path we find is some infinite
loop, we may miss an easy accepting configuration. The next idea is then to use BFS:
Breadth first search. Our deterministic simulator is going to implicitly perform BFS on the
computation tree.

Recall how BFS works on a rooted tree. It uses a queue. We pop an element off the
queue and push its children. Just as a refresher, consider the following example. Here the
traversal of the elements goes layer by layer from our initial node.

We are going to use the tape kind of like a queue. We will pop (read, then erase) a
configuration off the front of the tape, compute the possible next configurations, and push
(write) them to the end of the tape. For example if our nondeterministic machine had the
following structure:
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Figure 4: BFS, from the Dasgupta-Papadimitriou-Vazirani book

q0

q1

q2

w1 → a,R

w1 → b, R

Then our tape would transform like:

# q0 w1 w2 .... wn # ∞→

... # a q1 w2 ... wn # b q2 w2 ... wn # ∞→

The configuration q0w1...wn yields two configurations nondeterministically, those being
aq1w2...wn, bq2w2...wn. We would read the initial configuration on the tape, compute its
two next configurations, and append those on our tape. We would then erase the initial
configuration. We would then next look at the first configuration on the tape and repeat.
While we are doing this, we check if a configuration contains an accept state, and if it does,
we accept. If it contains a reject state, we toss the configuration and continue searching
the others. Its worth noting the Sipser book does a slightly different more detailed simula-
tion, still using BFS but with three tapes. I recommend you read it. We have shown that
nondeterministic Turing machines are no more powerful than Turing machines. Keep this

simulation in mind when we discuss the resource bounded variant of the question: P
?
= NP.

10: Church-Turing Thesis-6



6 Turing Completeness

For any kind of computation model, mechanical process, decision procedure C, we define it
to be Turing-complete if

L (TM) ⊆ L (C)

Recall that by the Church-Turing Thesis, we get the reverse implication for free, that
L (C) ⊆ L (TM). All we need in order to show that a computer is equivalent in power
to a Turing machine is to be able to simulate a Turing machine on it. As a brief example,
Python is Turing-complete since I believe you could write a Turing machine simulator in it.
We could have applied this to the previous four generalizations to immediately get that they
must be Turing-complete, but I wanted to actually work through some of the simulations.
You may hear the phrase “Turing-complete” in pop culture3 In practice, this can mean
wildly different things which I won’t expand on here. I only ask you not get confused. Now
we show two surprising models of computation which are Turing-complete.

6.1 Unrestricted Grammar

An unrestricted Grammar is just that. Recall that for a CFG we had productions of the
form

V → (V ∪ Σ)∗

A single nonterminal gets substring replaced by an arbitrary string of terminals and non-
terminals. In comparison, an unrestricted grammar places no restrictions on the left hand
side. It has productions of the form

(V ∪ Σ)∗ → (V ∪ Σ)∗

Any string of terminals and nonterminals can be replaced by any string of terminals and
nonterminals. Here we lose the distinction the terminals and nonterminals as well. A string
of terminals is not necessarily “terminal”, and there may be more productions to follow.

We show that unrestricted grammars are Turing complete. By the Church-Turing thesis,
you could write a simulator for an unrestricted grammar, so L (UG) ⊆ L (TM). We want
to show its Turing complete, so given a Turing machine, we will construct an unrestricted
grammar to simulate it. This will prove L (TM) ⊆ L (UG).

For any computation of a Turing machine, there exists a sequence of configurations. Our
simulation idea is that the sequence of working strings of our grammar will be analogous
to this sequence of configurations. The next production we can apply with our unrestricted
grammar will be analogous to the next configuration.

If our states were {q0, ..., qk} then our nonterminals will be {S,A,Q0, .., Qk} If in our
Turing machine abqicd ⊢ abc′qjd, we add productions Qic → c′Qj . Similarly if abqicd ⊢
aqjbc

′d then we add the set of productions aQic → Qjac
′, bQic → Qjbc

′. We add our
production to set things up as S → Q0AB and then A produces Σ∗, perhaps like A →
aA | bA | ε. If we have a halting state qh we add production Qh → ε. We also want to read
blanks so we have B → B | ε

Lets do an example. Recall the Turing machine which simply computes the bitflip of its
input and halts.

3https://xkcd.com/2556/
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q0 qh

0→ 1, R

1→ 0, R

→ , L

We would have a sequence of configurations on input 101 as

q0101 ⊢ 0q001 ⊢ 01q01 ⊢ 010q0 ⊢ 01qh0

Then our grammar would have a sequence of productions like

S =⇒ Q0AB
∗

=⇒ Q0101 =⇒ 0Q001 =⇒ 01Q01 =⇒ 010Q0 =⇒ 01Qh0 =⇒ 010

Notice that for any two sequential configurations, only a small local part of the string
is changed. This will be essential for many proofs in the future. Its clear that the grammar
simulates the machine but we have been vague on the details. If our Turing machine
computes a function f , then our grammar will produce f(Σ∗) = {f(w) | w ∈ Σ∗}. You
can perhaps believe we could fill in the details to get the simulation to accept or reject
appropriately, rather than compute everything. Or perhaps compute only the string we
wanted. The important part is the simulation.

6.2 L (TM) ⊆ L (2PDA)

A 2PDA is defined as you might think, a PDA with two stacks. The transition function
could be defined to read from them one at a time or to push and pop both simultaneously.
Either way, we claim that a PDA with two stacks is Turing complete. First by the Church-
Turing Thesis notice that L (2PDA) ⊆ L (TM). We will show L (TM) ⊆ L (2PDA) by
simulation of a Turing machine on a PDA with two stacks.

Recall the intuitive limitation of a PDA with one stack. If you need to read deep into
the stack, you have to pop things out losing them into the ether. With two stacks, instead of
popping them out and losing them, just push them into the second stack. We join our two
stacks together to form a bidirectional tape! The proof becomes obvious by the following
change in perspective:
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Denote one stack as the “left” stack and the other as the “right” stack. For some Turing
machine right move of the form a→ b, R, we pop a from the right stack and push b to the
left stack. For some Turing machine left move of the form c→ d, L, we pop c from the right
stack, push d to the right stack. Then we pop whatever is on top of the left stack and push
it to the right stack.

Here, we get a interesting observation. A PDA with one stack (PDA) is strictly stronger
than a PDA with no stacks (NFA). A PDA with two stacks (Turing-complete) is strictly
stronger than a PDA with one stack (context-free). But a PDA with three stacks is not
strictly stronger than a PDA with two stacks, its equivalent. In the language of set theory:

L (0PDA) ⊊ L (1PDA) ⊊ L (2PDA) = L (3PDA) = L (4PDA) = ...

Two stacks is the limit!. Its just enough to get all computation. The “degrees of freedom”
or amount of power a machine needs to be Turing-complete is relatively small.

7 Physical Realizability

A common theme in any Turing-complete model of computation is that we appeal to physics
and intuition. They all share some common traits.

• Program descriptions are of finite length

• A constant amount of work done in unit time. If more work needs to be done,
successive operations must be performed

This is the heart of the Church-Turing Thesis. Our understanding of algorithms is invariant
in the way we choose to represent them. As long as some basic requirements are met, many
models of computation are Turing-complete. There do exist theoretical “Super-Turing”
models of computation, but these are explicitly unrealistic on purpose. For example, they
allow Γ = Q. This would allow you to encode any string into a single cell, and compare
arbitrarily long strings in constant time. Something totally infeasible and unintuitive.
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CS 4510 Automata and Complexity February 27th 2023

Lecture 12: Countability

Lecturer: Abrahim Ladha Scribe(s): Rishabh Singhal

1 Introduction

Infinity used to be just a figure of speech, or perhaps a useful abstraction, not a real thing.
In the late 19th and early 20th centuries, Georg Cantor undertook a serious attempt to
formalize and understand the infinite, generalizing ideas from finite sets to infinite ones.

We denote the cardinality of the set S as |S|. If S is finite then |S| is just the size. But
what is the cardinality of the natural numbers |N|? Certainly for all finite sets F , it is true
that |F | < |N|. When we talk about the cardinality of infinite sets, we want to preserve our
intuition as much as possible. If A is a subset of B then A ⊆ B =⇒ |A| ≤ |B|.

Definition: We say a set S is “countable” if |S| ≤ |N|. All finite sets are countable.
We say a set is “countably infinite” if |S| = |N|. How can we show that a set has the same
cardinality as natural numbers?

• Recall f : A → B is one to one (injective) if f(a) = f(b) =⇒ a = b.

• Recall f : A → B is onto (surjective) if ∀y ∃x such that f(x) = y. There do not exist
any unmapped elements in the co-domain.

See how both 3,4 map to the same element? That makes this function not injective. See
how A is unmapped? That makes this function also not surjective. We say a function is
bijective if it is injective and surjective. Bijection gives us a natural “same size-ness” because
if there is a bijection between two sets, the elements seem to pair up nicely, meaning they
should have the same size.

Definition: We say a set S is countably infinite if ∃ f : N → S which is a bijection.
Recall the inverse of a bijection is also a bijection so equivalently if ∃ g : S → N which is
bijective.
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2 Examples of Countably Infinite Sets

2.1 Those “other naturals”

Outside of this class you may not consider zero to be a natural number. Lets prove it doesn’t
really matter, |N| = |N≥1|. Recall that N = {0, 1, 2, 3, ...} and N≥1 = {1, 2, 3, ...}. To prove
these sets have the same cardinality, we give an obvious bijection. Namely f : N → N≥1 by
f(n) = n+ 1. The elements pair up obviously like 0 → 1, 1 → 2 and so on, so our function
is certainly bijective. This shows that if you add or remove a constant amount of elements
from a countably infinite set, its still countably infinite.

2.2 The Evens

What is the cardinality of the even numbers? Define 2N = {0, 2, 4, 8, ...}. Our bijection is
again obviously f(n) = 2n. This shows that an infinite subset of a countably infinite set is
still countably infinite.

2.3 The Integers

Recall Z = {−2,−1, 0, 1, 2, ...}. When you are asked to give a bijection, it is equivalent
to showing that you can order the elements of a set in some way. Intuitively, if you can
“count” them. A bad idea is to first order the elements like 0,1,2,... because then we will
never reach the negative numbers. A better idea is to dovetail the negative and positive
integers in the following way.

If you were to actually work out what this bijection would be like functionally, you
would get

f(n) =

{
−n
2 n is even
n+1
2 n is odd

The integers feel like “twice as many” of the naturals so this can show that two countably
infinite sets is countably infinite. A countability infinite also need not be well-ordered.
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2.4 The Rationals

We define the rational numbers as Q = { a
b | a, b ∈ N; a, b ̸= 0}. They do not contain

repetitions, so 1
1 ,

2
2 are not distinct. Rational numbers have some very different properties

than the previous examples. For example for the natural numbers, there is only a finite
number of naturals between any two naturals, but this isn’t true for the rationals.

• N: ∃x where 0 < x < 1 ? no

• Q: ∃x where a
b < x < c

d ? yes

The naturals appear in discrete steps, but between any two rationals, there exists an
infinite amount of rationals. Why? The average of any two rationals is a rational, so the
midpoint between any two, you will find a rational1. Recursively applying this idea will
give you an infinite amount between any two! The mathematically correct term for this
is “dense”. Could there be more rationals than naturals? It feels like there is a lot more
of them. It turns out even despite this, the rationals are still only countably infinite, that
|N| = |Q|. This bijection is a little less obvious. Put all the rationals into a table with
columns and rows ordered by numerators and denominators. A bad idea would be to try
to go left to right row by row. You would never reach the second row. The idea is then to
compose the anti-diagonals ignoring duplicates!

This certainly is a bijection. Its surjective since every element is hit somewhere in this
criss-crossing, since every element is on some anti-diagonal. Its injective as every element
only can appear once in this ordering.

Here’s another solution. Consider the function f(a/b) = 2a3b. This function is bijective
to some set S = {2i3j | i, j ∈ N≥1}. Notice that |Q| = |S|. Also notice that since S ⊆ N
then |S| ≤ |N|. So by transitivity |Q| = |S| ≤ |N| =⇒ |Q| ≤ |N|. We also know that
|N| ≤ |Q| by the injection f(a) = a

1 so combined we see that |Q| = |N|. We could have also

1If you wanted to work it out, the rational between a
b
, c
d
is a

b
+ ( c

d
− a

b
)/2. You could simplify that with

arithmetic to get some rational.
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just observed that since |Q| ≤ |N|, we know Q is countable. Observing that Q is infinite is
enough to show it must be countably infinite.

2.5 Cartesian Products

The rationals are really just like, pairs of numbers. If we are tasked with finding a bijection
for N×N, we can immediately apply the same argument with the table and anti-diagonals.
This is enough to prove that the cartesian product of two countable sets is countable. We
can also immediately induct this argument to get that finitely many cartesian products of
countable sets is countable. Notice that N×N×N = (N×N)×N. We know that N×N is
countable. It remains countable if we perform one more cartesian product.

3 Hillbert’s Hotel

Suppose we have an infinitely tall hotel of countably infinite rooms. Each room already has
a guest, so the hotel is full.

• A single new guest arrives. Although every room already has a guest, the hotel staff
aren’t worried. They make each old guest move from room n into the next room,
room n+ 1. Now room zero is empty for the new guest.

• Suppose an infinitely long bus arrives with countably infinite new guests. Even though
the hotel seemingly has no space, the new guests can still be accomodated. Tell each
old guest to move from room n to 2n, then each of the new guests to move into the
now empty odd-numbered rooms.

• What if a countably infinite number of infinitely long busses arrive, each with count-
ably infinite more guests? I claim they can still be accomodated, and I leave it to you
as an exercise to figure out how.

4 Cantor’s Theorem

It would seem that you can play with infinity in most ways and remain countably infinite.
If we were to say that |N| = ∞, then the vibes are that ∞ + 3, 3 · ∞,∞3 all equal to ∞.
These are all polynomially related. Could it be the case that 2∞ = ∞? It turns out, no.
Lets denote |N| = ℵ0 and 2ℵ0 = ℵ1. We will show these are two very different infinities.
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Cantor’s theorem tells us that there is no bijection between any set, and its power set2.

|A| < |P(A)|

Note that its obviously true for finite sets. if A = {x, y} then P(A) = {∅, {x}, {y}, {x, y}}
and |P(A)| = 2|A|.

4.1 Diagonalization

We will prove Cantor’s theorem for the countably infinite case. To do so, we present a new
technique, called diagonalization. First we define the characterisitic sequence of a subset.
If S ⊆ N, to S we associate the infinitely long binary sequence χ ∈ Σ∞ such that

X[i] =

{
1 i ∈ S

0 i ̸∈ S

For example

• if S = {0, 3, 4} then χ = 10011000000...

• if S = 2N then χ = 10101010...

• if S = N then χ = 11111...

• if S = ∅ then χ = 00000...

Notice immediately that to each subset, corresponds a unique characteristic sequence. There
is a bijection between the set of infinitely long binary sequences, and the subsets of a
countably infinite set. The infinite sequence of digits exactly characterizes which elements
are and aren’t in a subset. What is a subset if not just a selection of the elements? It is
also important to remember that these sequences are infinitely long.

Let us proceed with the proof. Assume to the contrary that there exists some bijection
f : A → P(A) with A countably infinite. The elements of P(A) are exactly the subsets of
A. So then there exists an ordering of the elements of P(A) like S0, S1, S2, ...., where every
element is in this ordering. Let χ0, χ1, χ2, ... be the characteristic sequences of S0, S1, S2, ...
defined in the same ordering. We define “the diagonal” D to be the infinite binary sequence
with digits defined as

D[i] = 1− χi[i] = χi[i]

We take our ordering of characteristic sequences, find the ith one, find its ith digit, and
then set the ith digit of D to be the exact opposite of that. D certainly is an infinite binary
sequence, so it must be the characteristic sequence of some subset. Since f is bijective, D
exists somewhere in our ordering. Suppose the subset corresponding to D is Sj in our order
S0, S1, S2, ... Then D is the jth sequence in χ0, χ1, χ2, ... so D = χj .

What is D[j]? Well, since D = χj then D[j] = χj [j]. But recall how we originally
defined D, where D[j] = 1− χj [j]. Together, these imply that

χj [j] = χj [j]

2Recall that a power set is the set of all subsets of a set
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A digit cannot be zero and one simultaneously! Therefore, we see that we have reached a
contradiction, and |P(A)| is not countable. Why is it called diagonalization? Well suppose
you listed χ0, χ1, ... into a table with each χi as a row:

χ0 0 1 1 0 1 1 0 ...

χ1 0 1 0 0 0 0 0 ...

χ2 0 0 0 0 1 1 1 ...

χ3 0 0 1 1 0 0 1 ...

χ4 0 1 0 1 1 0 1 ...

χ5 0 0 1 1 1 0 0 ...

... ...

Then D = 101001... is the opposite of the diagonal of the table. Since D is different
than any row of the table, it exists no where in the table. For each row, it is defined to
be different in atleast one place, namely the diagonal (i, i) but maybe more. Could it be
χ3? No because χ3[3] = 1 and D[3] = 0. Could it be χ4? no, and so on. We assumed
to the contrary that these sequences were countable and that we can order them, but no
matter how we order them, we can always construct an element not in the ordering. So
there can never exist a bijection f : A → P(A). It is important to convince yourself that
this argument is not circular, but self-referential.

5 Uncountability

We have now shown that P(A) is not countably infinite when A is countably infinite, it is
something greater. We call these sets uncountable. Intuitively, a countably infinite set is
one in which you can “count”. It feels infinite in a discrete sense. At some element, you
can choose a next one. Conversely, an uncountable set is literally “uncountable”. Imagine
a stream of water. What are the units? What is the “next” water?3. It feels infinite in a
continuous sense.

By a similar diagonalization argument, you can prove the real interval (0, 1] is uncount-
able, by diagonalizing over the decimal expansions beginning with zero4. Given that (0, 1]
is uncountable, you can prove that R≥0 is uncountable by the bijection f(r) = 1/r− 1. Es-
sentially you can stretch the unit sized interval over the entire real positive line. We could
have also performed the diagonalization proof directly on infinitely long binary strings Σ∞

to show they are uncountable.

6 How to Prove Countability

6.1 Union of Two Countable Sets

Let A,B be countably infinite. Then there exists bijections f : A → N, g : B → N. We give
a bijection for A ∪B as

3If you recall that water is atoms then technically water is discrete and countable but the intuition is
there even if the science isn’t

4recall that 0.9 = 1. There are a few proofs of this. One is that 1− 0.999... = 0.0000... and another is to
notice that 0.999... = 0.333...+ 0.333...+ 0.333... = 3(0.333...) = 3 1

3
= 1
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h(x) =

{
2f(x) if x ∈ A

2g(x) + 1 if x ∈ B

We leave it to you as an exercise to show its bijective, reducing to the bijectivity of f, g.

6.2 Countable Union of Countable Sets

A countable union of countable sets is countable. Most unions you have ever seen have been
countable. They index over N with i = 1, 2, 3, ... but the index set of a union need not be
countable in general. Consider ⋃

x∈R
{x} = R

Here we index over R, an uncountable set. Each element is a singleton containing just x,
it is finite and therefore countable. But our union is over R, uncountable. We have an
uncountable union of countable sets, yet, it is uncountable.

Lets prove that a countable union of countable sets is countable. Let A be countable
and each Si be countable.

|
⋃
i∈A

Si| ≤ |A× N| ≤ |N× N| = |N|

The first inequality holds by reordering the elements, and maximally assuming each Si is not
finite. The second inequality holds by assuming that A is not finite. The third inequality
holds by what we previously proved. So a countable union of countable sets is countable.
This proof is actually very rough and requires more rigor, but you get the idea.

6.3 Three solutions

Let’s do a problem. Let N∗
≥1 be the set of finite sequences of natural numbers greater than

one. It may contain things like [1, 11, 1] or [23, 100, 18] and so on. We give three solutions
to showing this set is countably infinite.

• Let Ai = sequences which sum to i, for example A3 would contain [1, 1, 1], [3], [2, 1]
and so on. Since each sequence sums to something, The Ai’s partition N∗

≥1

N∗
≥1 =

∞⋃
i=1

Ai

Notice that each Ai is finite, so countable. Then N∗
≥1 is a countable union of countable

sets, so its countable.

• consider the map: F ([x1, x2, x3, ...]) = 2x13x25x3 ... or more generally

F ([x1, ..., xk]) =

k∏
i=1

pxi
i
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where pi is the i’th prime. By the fundamental theorem of arithmetic, every number
has a unique prime factorization, and this immediately gives us that our map is
injective. Suppose two sequences exist a, b with F (a) = F (b). Then they are divisible
by exactly the same power of two, so then they share the same first element, x1.
Repeating this argument we see that a = b. Therefore, we have an injection F :
N∗
≥1 → N which implies that it is countable.

• There is a injection hiding in us all along. What is the difference between the two
sequences [1, 1] and [2, 3, 4]? Is it the length? Is it the number of elements? I put
these on the board, you immediately know that the sequences are different. You
didn’t check the lengths or the elements, so how you did you know? The answer is
that the two sequences are different because they look different! Define our injection
f(a) = “a”. That is, it is the string casting function. Now its certainly true that
“[1, 1]” ̸= “[2, 3, 4]”. We observe that f(N∗

≥1
) ⊆ Σ∗ and subsets of countable sets are

countable. Why is Σ∗ countable? It is the countable union of countable sets. Recall
Σ∗ = Σ0 ∪ Σ1 ∪ ...

This last point leads us to a powerful theorem called the Typewriter principle: If some
set S has elements a ∈ S where every element can be uniquely described by a string. Then
S is countable. Lets prove it. If every element of S can uniquely be described by a string,
then f : S → Σ∗ is injective. The co-domain f(S) is a set of strings, so f(S) ⊆ Σ∗ and
f is certainly bijective to f(S) so we see that S is bijective to a subset of a countable set,
and is therefore, countable. This is not sufficient to show uncountability. Showing some
elements of a set have some infinite encoding isn’t enough, since you must also show that
there does not exist a unique finite encoding. This turns out to be as hard as finding a
bijection. Please only use it to show countability.

We now have an entire toolbox to show a set is countable. Let C be any countable set,
and we want to show S is countable. We can do any of the following

• Give a bijection f : C → S

• Give a bijection f : S → C

• Give an injection f : S → C

• Give a surjection f : C → C

• Give an ordering of every element where no element appears twice

• Show that S is a subset of some countable set, since S ⊆ C =⇒ |S| ≤ |C| =⇒ |S| ≤
ℵ0

• Show that S is representable as a countable union of countable sets

• Arrange the elements of S into a grid and compose the anti-diagonals, or some other
pattern to implicitly give a bijection

• Show it is the closed under operations we know do not change the cardinality of the
set, for example S = ({C × C} ∪ {0, 1})k.
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• Show that its elements can be uniquely represented as finite strings and apply the
typewriter principle.

Common known countable sets include N,Z,Σ∗,N∗, and so on. Every language is also
countable.

7 How to prove Uncountability

Let U be some known uncountable set. We give several ways to show a set S is uncountable.

• Diagonalization

• Find a bijection f : S → U

• Show that S contains some uncountable subset. Since if U ⊆ S is uncountable then
|U | ≤ |S| =⇒ ℵ1 ≤ |U |

• Find an injection f : S → U

• Apply Cantor’s theorem, show that it is the powerset P(A) of some countably infinite
A

We do have far fewer ways to show a set is uncountable than to show a set is countable.
Which tool you use depends on ease of use.

8 Rejection

What are numbers? They were not there when we started all this. We logically construct
the naturals by defining zero to exist, and the sucessor function S(x) = x+1. By repeated
application we can produce the numbers. It is well understood that they are the product of
some infinite process. 0,1,2,... Ongoing. Forever. There are those who reject this idea. They
do not object to the naturals, but the manipulation of an infinite process. They distinguish
between the infinite process 0,1,2,... and calling this infinite process N = {0, 1, 2, ...}, and
then messing around with N. These are the finists. But without what they object to, we
are unable to construct the countable and uncountable. There is an even stronger group,
known as the ultrafinists. I will leave you with a quote.
I have seen some ultrafinitists go so far as to challenge the existence of 2100 as a natural
number, in the sense of there being a series of “points” of that length. There is the obvious
“draw the line” objection, asking where in 21, 22, 23, ..., 2100 do we stop having “Platonistic
reality”? Here this . . . is totally innocent, in that it can be easily be replaced by 100 items
(names) separated by commas. I raised just this objection with the (extreme) ultrafinitist
Yessenin-Volpin during a lecture of his. He asked me to be more specific. I then proceeded to
start with 21 and asked him whether this is “real” or something to that effect. He virtually
immediately said yes. Then I asked about 22 , and he again said yes, but with a perceptible
delay. Then 23 , and yes, but with more delay. This continued for a couple of more times,
till it was obvious how he was handling this objection. Sure, he was prepared to always
answer yes, but he was going to take 2100 times as long to answer yes to 2100 then he would
to answering 21. There is no way that I could get very far with this.
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CS 4510 Automata and Complexity March 8th 2023

Lecture 13: Foundation of Mathematics

Lecturer: Abrahim Ladha Scribe(s): Yitong Li

1 A Motivation from Geometry

Recall last time we had a lecture on pure mathematics, countability, and set theory. The
lecture before that was kind of pseudo-philosophical on the Church-Turing thesis. The
lecture before that one was on engineering, programming and understanding the Turing
machine. To keep the trend of not having one, today’s lecture will be on history.

We will go from 300 BC to 1936. We begin of course, with the Greeks. Around 300 BC,
Euclid wrote “The Elements”, several treatises in geometry. It is one of the most influential
texts of all time. It established mathematics as a deductive rather than empirical science.
It has been in print for millennia and comes second only to the bible. Just because calculus
wasn’t invented yet didn’t mean you didn’t have math class. You used to have to take a
three course series on classical geometry.

Recall that a theorem is some statement proved. From what? Other theorems? Not
quite. There is some flow of implications in this giant tree of knowledge. Follow back to
eventually reach some root: The axioms. An axiom is a statement that needs no proof. It
may be assumed to be true. It is usually so trivial to be anything but true. For example,
associativity of addition: (a+ b) + c = a+ (b+ c).

Euclid defined1 his first five axioms, or postulates as follows:

1. any two points may be connected by a line segment.

2. any line segment may be extended infinitely in both directions.

3. for any point and radius, there exists a circle.

4. all right angles equal each other

5. given a line l and a point p, not on that line, there exists exactly one line through p
parallel to l.

A proof is an application of axioms with the “rules of deduction” which are themselves
axioms. All of the axioms for Euclid’s elements are a model for what we now call Euclidean
geometry. From the axioms, you can prove things like: every square has four equal right
angles, the sum of the interior angles of a triangle is 180◦, if a triangle has two equal angles
it has two equal sides, and so on.

Euclid’s elements have nothing to do with geometry. It is about rigorous and systematic
thinking. It is nothing more than a by-product of the school of thought that Euclid and other

1Of course, he did it in ancient Greek. Here they have been modernly rephrased. Look up Playfair’s
axiom if you are interested in this rephrasing.
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Greeks came from. Plato’s Theory of Forms asserts that ideas are the supreme achievement
of human beings. They are a refined, pure reflection of the capability of the human mind.
There exists the Real: the material, empirical, measurable, and approximate world. There
also exists the Ideal: one of concepts and thought. The Real and Ideal certainly have a
duality2. This school of thought asserts that the world, the materiality, is shaped by some
things prior to it, the immaterial. When I draw a triangle on the board, understand this
exists no where except in your mind. No Real triangle you can form from sticks, or by
drawing in the sand can ever reach the precision of the Ideal triangle. However, by studying
the Ideal, it may reveal to you something about the Real. To understand the material, you
only need to understand the non-material. Abraham Lincoln famously used the Elements
to train as a lawyer.

At last I said, ‘Lincoln, you never can make a lawyer if you do not understand
what demonstrate means’; and I left my situation in Springfield, went home to
my father’s house, and stayed there till I could give any proposition in the six
books of Euclid at sight. I then found out what demonstrate means, and went
back to my law studies.

In 1854 in an unpublished note, he used this rigorous thinking to assert abolition.

If A. can prove, however conclusively, that he may, of right, enslave B. — why
may not B. snatch the same argument, and prove equally, that he may enslave
A? – You say A. is white, and B. is black. It is color, then; the lighter, having
the right to enslave the darker? Take care. By this rule, you are to be slave to
the first man you meet, with a fairer skin than your own. You do not mean color
exactly? – You mean the whites are intellectually the superiors of the blacks,
and, therefore have the right to enslave them? Take care again. By this rule,
you are to be slave to the first man you meet, with an intellect superior to your
own. But, say you, it is a question of interest; and, if you can make it your
interest, you have the right to enslave another. Very well. And if he can make
it his interest, he has the right to enslave you.

Millennia was spent trying to refine Euclid’s Elements, to show they were only as good
and simple as necessary. A set of axioms is independent if no axiom can be proved from
the others, like independence with respect to a basis of a vector space. If an axiom could
be proved from the others, then it need not be an axiom. Remove it, and simply take it as
a theorem. The fifth axiom took a lot attention as if it was the first really unobvious one.
The first four are just definitions. Let A be the parallel postulate and EE the axioms.

First, people tried to see if you could derive the parallel postulate from the others.
Notationally, we would present this as (EE − A) ⊢ A? Here ⊢3 means provable from a set
of axioms. It is similar to an implication. We now know the fifth postulate is independent,
so this is impossible.

Secondly, we wanted to see if it was even a necessary axiom. So there were attempts to
prove that (EE − A + ¬A) ⊢ 0 = 1. That is, if you removed the axiom and assumed its

2Maybe are better known by other names to you, theory and practice?
3latex is vdash
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Figure 1: Three models of geometry, and their different theorems
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negation, you would produce a contradiction. This should work for any usable and necessary
axiom, but they discovered something insane. Taking the negation doesn’t produce an
inconsistency, instead it produces two different consistent models!

Recall the parallel postulate says “Given a line and a point not on that line, there exists
exactly one line through the point parallel to the line.” Our negations will be changing
“exactly one” to “greater than one” or “less than one”. We are changing the number of
possible parallel lines from = 1 to > 1 or < 1.

If the number of parallel lines through the point equals one, we live in a flat world,
the Euclidean plane. Any other parallel lines would be equivalent since they intersect at
all points. If the number of parallel lines were greater than one, then we exist not on the
plane, but on a saddle, or a pringle. There exists many “parallel” lines through the point
which do not intersect our line. This is also called hyperbolic, or Lobachevskian geometry.
If the number of parallel lines is less than one, as in there do not exist any parallel lines
anywhere ever, we are in the model of spherical or ellipsoid geometry. We are embedded
onto an egg, or globe. The lines on a sphere are only the great circles, smaller bands of
latitudes are curves.

Note that these are consistent models. They cannot prove 0 = 1 but all the theorems
which these models derive are slightly different. For example, in spherical geometry, a
triangle has the sum of its interior angles > 180◦. You can construct a triangle with three
right angles, something impossible to do in the Euclidean plane. Begin at the equator, go
to the north pole, turn 90 degrees, go back to the equator, and turn 90 degrees again to go
back to where you began. On a sphere, a triangle has the sum of its interior angles equal to
180◦ if and only if has area zero4. Euclidean geometry is supposed to be “intuitive,” but we
discovered it was on all shaky foundations. We formulated Euclidean geometry following
our empirical experiences in the Real, measuring angles and generalizing our observations.
Maybe the Real could follow these models instead? Who can say? How can we know that
every time weve measured the angles of a triangle, it hasn’t technically been 180 + ε this
whole time? We do live on a sphere after all. This sparked more serious concerns about the
foundation of all of mathematics.

2 A Foundation from a Theory of Sets

A modern first attempt of formalizing mathematics was done by Gottlob Frege’s ”Begriff-
sschrift”. It builds off of previous work by Aristotle’s Organon and Leibniz. It identifies
as ”a formal language modeled on that of arithmetic, for pure thought”. He also created
many of our rules of deduction, for example

• A =⇒ ¬¬A

• c = d =⇒ f(c) = f(d)

• (A =⇒ B) ∧A =⇒ B5

4In fact, the fifth postulate is logically equivalent to “there exists a triangle whose interior angles sum to
180◦”

5This is called modus ponens
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Theses are just a few of the rules of deduction noted by Frege, that we now use for propo-
sitional logic. You may use these without even realizing they are axioms.

Set theory was a natural foundation for mathematics, as they can derive numbers but
also greater and more interesting structures. The motivation was to create a unifying
foundation for all of mathematics. Bertrand Russell noticed the following issue, applied to
many axiomatic systems. Suppose we have the following axioms for some simple theory of
sets

∀x∀y[∀z(z ∈ x ⇔ z ∈ y) ⇒ x = y] (1)

The axiom of extensionality simply defines the equality relation of sets. Two sets are
equal if they contain the same elements.

∃y∀x[x ∈ y ⇔ φ(x)] (2)

For any predicate φ, the axiom of unrestricted comprehension basically freely allows
you to define any set you want. It allows you to make statements like “let y be the set
of primes, or horses or whatever”. If you can define it with a logical predicate, then there
exists a set of those elements. As an example of a predicate, the following is one for the
prime numbers

Prime(x) = ∀x¬∃z[(x > 1) ∧ (z ≤ x) ∧ ¬(z = 1) ∧ ¬(z = x) ∧ ¬(z|x)] (3)

We however, are in a theory of sets. We can construct the numbers from the sets, and
we will describe how to later. But for now consider predicates over sets. This generality
of unrestricted comprehension is also our fragility. Consider the set of all sets which do
not contain themselves. Let φ(x) = x ̸∈ x. A perfectly valid predicate. By the axiom of
unrestricted comprehension, we see that

∃y∀x[x ∈ y ⇔ x ̸∈ x]

Since it’s true ∀x, we may specify, and consider the case for one selection of x. What
happens for x = y?

y ∈ y ⇐⇒ y ̸∈ y

A contradiction!6 We are not in a proof by contradiction, yet we have derived a con-
tradiction. We have shown that Frege’s axiomatic system was capable of producing an
inconsistency. Although this attack was devastating to Frege’s words, it did not deter much
the resolve of the formalists. The formalists are a school of thought revolving around build-
ing Hilbert’s program. They seek a secure, rigorous, and logical foundation in which to
secure all of mathematics. Roughly with these goals:

1. All math written in a precise formal language manipulated according to well-defined
rules

2. Completeness: all that is true is provable

6see Logicomix 162-171
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3. Consistency: you should provably be unable to obtain a contradiction

4. Decidability: There should exist an algorithm to decide the truth value of any state-
ment.

The most significant effort in this regard was by Russell and Whitehead, They spent
decades and thousands of pages to build up a “Theory of Types.” To give a quick summary
of twenty years of work, they hoped to avoid self-reference by using these types. Anything
of some type i is unable to construct sentences which reference other things of type i (in-
cluding itself). They thought removing self-reference would create a strong and bulletproof
foundation. The axiom of unrestricted comprehension was modified to the axiom of re-
stricted comprehension. Now you can only construct subsets of other sets. By restricting
comprehension, we appear to avoid Russell’s paradox.

• unrestricted comprehension: {x | φ(x)}

• restricted comprehension: {x ⊆ z | φ(x)}

Is this system useful? Let’s roughly prove 1 = 1. First let ∅ exist by the axiom of
restricted comprehension with some useless φ(x) = {x ∈ y | (x ∈ x) ∧ ¬(x ∈ x)}. Nothing
satisfies it so we create ∅. Sometimes the empty set exists axiomatically, but here it follows
from restricted comprehension. Now let 0 := ∅, for shorthand. Let S(w) := w ∪ {w}
also for shorthand. Notice S(∅) = ∅ ∪ {∅} = {∅}. Lets denote that as one. Namely
1 := S(0) = S(∅) = ∅ ∪ {∅} = {∅}. We may now apply the axiom of extensionality. Is
it true ∀z, z ∈ {∅} ⇐⇒ z ∈ {∅}? Yes, then this implies that 1 = 1. Supposedly to
prove if 1 + 1 = 2 took Principia Mathematica three hundred and seventy two pages. This
1 = 1 example is also from the axioms of ZFC7 technically. Could PM serve as a suitable
foundation? Free of issue? or somewhat incapable?

3 Gödel Incompleteness

Godel showed the futility of Russell and Whitehead’s effort. We say an axiomatic system is

1. Complete: if ∀p, there exists a proof of p if it’s true, or a proof of ¬p if it’s false. This
asserts provable ⇐⇒ true.

2. Consistent: ∀p there exists a proof of p ∧ ¬p. Every statement is exactly true or
exactly false. No statement can be false and true simultaneously.

A system being complete means in some sense, it is “total”. From the axioms, all
statements are provable. There is no theorem which requires some missing secret axiom. It
also asserts if something is true, there must exist a proof of it, and a way to deduce such a
proof.

A system being consistent is the bare minimum requirement for it being useful. This
asserts you cannot prove 0 = 1. If you could, then everything follows trivially.

7ZFC is a modern conservative axiomatic set theory, which stands for Zermelo-Fraenkel plus the axiom
of Choice. We didn’t use the axiom of choice here
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For years and years, Russell and Whitehead searched for a proof that PM was consistent.
Since PM was intended to serve as a foundation of all of mathematics, they were trying to
show PM ⊢ Con(PM).

3.1 Gödel’s First Incompleteness Theorem

Godel show for any axiomatic system, including PM. It cannot be both consistent and
complete. Rephrasing: There does not exist a complete and consistent axiomatic system
with sufficient arithmetic. Let’s proceed with the proof.

Let Dem(p, r) = 1 ⇐⇒ p is a proof of r8. Here, Dem stands for demonstrates. Let

g = ¬∃p [ Dem(p, g) ]

In human words, g says “I am not provable” or “There does not exist a proof of me.”
Notice the self-reference. Since by our assumption, our axiomatic system is complete and
consistent, g is one of provably true or provably false. We have two cases.

1. g is provably true. Then g asserts there is no proof of g. Then g is true and not
provable. Now there exists a true but unprovable statement, so we are incomplete.

2. g is provably false. Then ¬g is provably true.

¬g = ¬¬∃p [ Dem(p, r) ] = ∃p [ Dem(p, r) ]

So ¬g implies there exists a proof of g, so g is provably true. Then (¬g∧g) is provably
true and we are inconsistent.

3.2 Gödel’s Second Incompleteness Theorem

Not only does Gödel says that achieving a complete and consistent axiomatic system that is
strong enough impossible but any system is capable of proving its own consistency. Logically,
for any axiomatic system AS:

AS ⊬ Con(AS)

The consistency of AS cannot be proven from within AS. Assume to the contrary
AS ⊢ Con(AS). That there exists a proof of the consistency of AS from within AS. Let
this proof be denoted as C. Since the proof of Gödel’s first incompleteness theorem assumes
the consistency of AS, we may replace this assumption with the proof C. Then we proceed
and observe C =⇒ g, our diagonal sentence. Since we can construct g, then AS was not
simultaneously consistent and complete, a contradiction. No system is capable of proving
its own consistency.

It turns out that some toy systems can be complete and consistent, but they cannot
prove their own consistency. You need to use techniques from outside the system to prove

8Technically, Gödel encoded proofs, statements, everything as numbers using a Gödel numbering, and
then defined these functions based off of those numberings. Pedantically, it should be said like “p is a number
which represents a proof of a statement which is represented by the number r”. To prove this statement
was constructible from simple arithmetic, he had to build it up using some forty formula.
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them. If PM was attempting to be a model for all of mathematics, then there there is
no “outside” and such a proof of the consistency of PM is unprovable. Not only were the
formalists, Russell, Whitehead, and Hilbert losers, they were double losers. The proof they
spent decades searching for could never exist.9

4 Turing’s Undecidable

Alan Turing takes a class foundations, where he learns Gödel Incompleteness. It also con-
tains a description of a large, unsolved problem we will call “Hilbert’s decision problem”
or the “Entscheidungsproblem”. It is phrased as “Give a procedure that takes as input a
statement, and returns yes/no if it’s always true or always false.” Hilbert genuinely believed
there were no unsolvable problems. Turing was twenty two when he gave a negative answer.
First, he had to formalize the notion of computation, and to do so, he invented what we
now call the Turing machine. Next, he described the Church-Turing thesis to convince us
that this definition was in fact universal.

Recall that a language L ⊆ Σ∗ is decidable if there exists a Turing machine M such that

x ∈ L ⇐⇒ M accepts w

x ̸∈ L ⇐⇒ M rejects w.

We can rephrase Hilbert’s decision problem as “give a process to decide every language”.
Following the Church-Turing thesis, the decidable languages give a characterization of the
concept of an “algorithm”. A purely mechanical process in which a decision on yes or no
is reached. If every language is decidable, then there exists an algorithm to solve every
problem. There do not exist any unsolvable problems. Could every language be decidable?
Every problem be solvable? Turing said no, there exist undecidable languages. He did so
in two ways.

First, notice that the languages decidable by a Turing machine are countable. Each
language is decidable by many deciders, but one decider decides each language. Let D
be the set of all deciders and LD(TM) be the decidable languages. We may map each
decidable language to exactly one of its deciders to see |LD(TM)| ≤ |D|. By the typewriter
principle, we see that |D| is countable. Therefore, so must be the decidable languages.10

Next observe that the number of languages is uncountable. If L ⊆ Σ∗ then L ∈ P (Σ∗).
Since |Σ∗| is countable, |P (Σ∗)| is uncountable, by Cantor’s Theorem. There exists no
surjection LD(TM) → P (Σ∗) so there must exist undecidable languages, infinitely many
in fact. Most languages are undecidable using this simple nonconstructive, counting proof.

Next, Turing showed constructively that there exist real concrete unsolvable problems.
Define HALT as

HALT = { ⟨M,w⟩ | M halts on w}.

HALT is a language of pairs of encodings of Turing machines and possible inputs, where
⟨M,w⟩ ∈ HALT ⇐⇒ M halts on input w. We show that HALT is not decidable. This

9See Logicomix 283-286
10I previously left this as an exercise for you to show |L (NFA)| was countable.
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means there is no general algorithm to decide if a Turing machine will halt on an input! A
provably unsolvable problem.

Assume to the contrary that HALT is decidable. Then there exists a Turing machine
H(⟨M⟩, w) on input ⟨M⟩ and w always correctly says yes/no if M halts on w. Notice that
since H is a decider, it always returns and never loops. We give a visual proof, representing
H like an API or some IDE plugin or something. The middle circuit is the decider for H.
We build D around using calls to H, like H is its subroutine. D takes in one argument and
passes it to both arguments of H. Then if H returns true, D infinitely loops. If H returns
false, then D simply returns and halt.

Figure 2: The Halting Problem

In pseudocode, D is doing the following with H:

def D(M):

if H(M,M):

while True:

continue

else:

return

What is D on input ⟨D⟩? D(⟨D⟩)? There is no problem with asking this question. We may
run the code of a machine on the machine itself with no problem. Compilers can compile
themselves. We have two cases.

• D(⟨D⟩) halts ⇐⇒ H(⟨D⟩ , ⟨D⟩) returns true ⇐⇒ D(⟨D⟩) loops

• D(⟨D⟩) loops ⇐⇒ H(⟨D⟩ , ⟨D⟩) returns false ⇐⇒ D(⟨D⟩) halts.

A contradiction. No decider for H can exist and we see it is undecidable.

5 Conclusion

We have given three proofs in three different settings. If you have a keen eye, you may
note these are really all the same proof. They all have the same structure. They are
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all diagonalization over different settings. Sets, logical formulas, and decidable languages.
These three proof all have the telltale common features of a proof by diagonalization. There
is some negation, and some self-reference, or diagonal. A set not containing itself, a formula
saying something about its own unprovability, or a machine contradicting being run on its
own code.

6 Moral of History

What is the moral of the history here? We should be incredibly thankful that Hilbert’s
program failed. Had it succeeded, mathematics would have been drained of all its creativ-
ity. There would exist perfect automatic theorem provers. All of mathematics, all of the
complex and beautiful technical arguments could be reduced to symbolic manipulation. In
Formulario Mathematico, Peano develops a symbolic language for mathematics. He says

Each professor will be able to adopt this Formulario as a textbook, for it ought
to contain all theorems and all methods. His teaching will be reduced to showing
how to read the formulas, and to indicating to the students the theorems that
he wishes to explain in his course.

Mathematics is an ancient, and didactic, and even dramatic tradition. You sit in front of
a board and a lecturer like humanity has for millennia. Reduction of this art to something
as mechanical as a combine harvester, reaping theorems, is controversial, putting it politely.

Leibniz, centuries before the foundational crisis in mathematics made a similar remark
on this mechanization. He noted that ideas were compounded from some “alphabet of
human thought”. He also remarked that complex ideas proceed from these by a process
analogous to arithmetical multiplication.

It is obvious that if we could find characters or signs suited for expressing all our
thoughts as clearly and as exactly as arithmetic expresses numbers or geometry
expresses lines, we could do in all matters insofar as they are subject to reasoning
all that we can do in arithmetic and geometry. For all investigations which
depend on reasoning would be carried out by transposing these characters and
by a species of calculus.

This is Leibniz’s motivation to build some of the first mechanical calculators. I am
personally thankful that the mechanization of mathematics failed. Otherwise, I would not
have this job. Some of Hilbert’s program has been salvaged. The consensus is that ZFC
forms a safe and conservative foundation for much of the usable parts of mathematics. This
is independent of Gödel’s theorems, which say that ZFC could never be not both complete
or consistent.

A second moral is to not bet against the youth. Russell was 29 when he showed his
Paradox. Frege was 53. Russell chose to go down the same path, attempting to build a
system that Frege could not. Gödel was 24 when he showed his incompleteness theorems.
By then, Russell had aged to 59. Turing was 24 when he proved the existence of unsolvable
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problems. Hilbert was 74.11 It can become easy to become entrenched in your own ideas
for decades. All it may take someone younger to come in with a different perspective.

7 Further Reading

• The referenced graphic novel is called Logicomix. A copy from the internet archive
can be found here
https://archive.org/details/Logicomix-Comic-EarlyLifeOfBertrandRussell

• One of the best in depth proofs of Gödel Incompleteness is from https://evoniuk.github.io/Godels-
Incompleteness-Theorems/index.html

• Gödel’s original proof is not too beyond your ability. A translated copy (the original
was in German) may be found in THE UNDECIDABLE, a collection of basic papers
edited by Martin Davis

• The construction of the naturals from axiomatic set theory was done following the
Von Neumann ordinals. Following our sucessor function S(w) = w ∪ {w}, The first
few are

– 0 : ∅
– 1 : {∅}
– 2 : {∅, {∅}}
– 3 : {∅, {∅}, {∅, {∅}}}
– 4 : {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}

There are other constructions of the naturals as well, from set theory.

• Lobachevsky is equally remembered for his model of geometry, as he was for accusa-
tions and rumors of plagarism. Tom Lehrer wrote a song about it.
https://www.youtube.com/watch?v=gXlfXirQF3A

• In this worksheet, I go into a slightly more technical proof of Gödel’s theorems
https://ladha.me/files/sectionX/godel.pdf.

• There is also a video on my youtube channel here
https://www.youtube.com/watch?v=VpehBGEenWY

• There is a popular science book called Gödel, Escher, Bach which argues that self-
reference something something consciousness.

11These may be off by a year or two since I don’t want to count months.
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Lecture 14: Undecidability by Reduction

Lecturer: Abrahim Ladha Scribe(s): Abrahim Ladha

Today we are going to solidify our understanding of what we can know about the unknown.
Recall last time we discussed the work of Russell, Gödel, and Turing. We showed there
exist unanswerable questions in two ways

• There exist unprovable statements

• There exist unsolvable problems

We proved these using a specialization of the diagonalization technique. Note that nothing
is preventing us from stating these unsolvable problems or unprovable statements, only
proving or solving them. Today we expand on Turing’s work. Our first known undecidable
language is

HALT = { ⟨M,w⟩ | M halts on w}

1 Some Closure

Recall the definition of decidable and recognizable languages. We say a language L is
decidable (L ∈ LD(TM)) if there exists a Turing machine M such that

• w ∈ L ⇐⇒ M accepts w

• w ̸∈ L ⇐⇒ M rejects w

We say a L language is recognizable (L ∈ LR(TM)) if there exists a Turing machine M
such that

• w ∈ L ⇐⇒ M accepts w

• w ̸∈ L ⇐⇒ M rejects or loops on w

Notice that by definition, LD(TM) ⊊ LR(TM). We showed that HALT ̸∈ LD(TM)
but it turns out that HALT is recognizable! Lets give a recognizer. Notice this correctly

Algorithm 1 Recognizer for HALT

on input ⟨M,w⟩
simulate M on w
if M accepts or rejects w then

accept
end if

recognizes HALT . If ⟨M,w⟩ ∈ HALT then we know M halts on w, so if we simulate it we
halt and correctly accept. But if ⟨M,w⟩ ̸∈ HALT , then M loops on w and so do we. The
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step of simulating M on w does not terminate and we do not reach the conditional. This
is then a correct recognizer for HALT . Since HALT is recognizable but not decidable, our
containment is strict. So Turing proved that not every language is decidable. But is every
language recognizable? By a similar counting argument, we know that there are uncountably
many languages and only countably many recognizable languages, so most languages are
unrecognizable. Is there a notable unrecognizable language, in the same sense that HALT
is a notable undecidable language? Lets prove two theorems about closure to show the
answer is yes.

1.1 A First Theorem

First we show that the decidable languages are closed under complement. That L ∈
LD(TM) ⇐⇒ L ∈ LD(TM), that the decidable languages are closed under comple-
ment. This one is easy. If a language is decidable, then there exists a decider M for it.
Since its a decider, it halts on all inputs. Construct a new Turing machine M which is just
M but we swapped its accept and reject state. Since M was a decider, so is M , and we
see that it decides L, so it is decidable. We may represent this visually using the following
diagram for M .

1.2 A Second Theorem

Now lets prove that if L,L ∈ LR(TM) =⇒ L ∈ LD(TM). If a language and its
complement are both recognizable, then the language is decidable. Suppose that L,L are
recognizable with recognizers R,R. We give a decider for L as follows. A recognizer is not
guaranteed to halt on all inputs, but it is guaranteed to halt on the good ones. Let us
argue correctness, and why our construction is a decider. If w ∈ L, then by definition R
halts and accepts on w, so our machine will halt and accept if w ∈ L. If w ̸∈ L, then by
definition R halts and accepts, so our machine will halt and reject if w ̸∈ L. Then for all
w, it correctly and exactly decides L so we see that L is decidable. We also now give the
equivalent circuit diagram. Of independent interest, this proof shows you how to run two
simulations “in parallel”. They aren’t really in parallel, but rather dovetailed together one
at a time. This is necessary. For example, if w ∈ L, this may make R loop on w. But R
will eventually halt on w. We could not run these simulations sequentially.
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Algorithm 2 Decider for L

on input w
R = ...
R = ...
while True do

Simulate R on w for one step
Simulate R on w for one step
if R accepts then

accept
end if
if R accepts then

reject
end if

end while
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1.3 An Unrecognizable Language

We now immediately apply the theorems to find a useful unrecognizable language. Assume
to the contrary that HALT is recognizable. Then since HALT is recognizable, this would
imply that HALT is decidable. But we proved by diagonalization its not decidable, a
contradiction. Therefore, HALT is not recognizable.

Here we have proved existence of an unrecognizable language. The takeaway is that
we did not have to use diagonalization. Simply by the fact we can relate problems to one
another, we were able to prove this language was also undecidable and unrecognizable. Let
us generalize this idea to prove many more languages are undecidable.

2 Many-One Reductions

Recall that a function f : Σ∗ → Σ∗ is said to be computable (or Turing-computable) if there
exists a Turing machine M such that for every w ∈ Σ∗, M begins with w on the tape and
halts with f(w) on the tape. By the Church-Turing Thesis, in some sense, the computable
functions are the largest class of functions.

For A,B ⊆ Σ∗ languages, we say that A is many-one1 reducible to B (written as
A ≤m B) if there exists a computable function f such that w ∈ A ⇐⇒ f(w) ∈ B. Notice
that this also implies that w ∈ A ⇐⇒ f(w) ∈ B. It maps A to B and A to B. The ≤m

relation satisfies the following few properties. If A ≤m B then:

• If B is decidable, then A is decidable (B ∈ LD(TM) =⇒ A ∈ LD(TM))

• If A is undecidable, then B is undecidable (B ̸∈ LD(TM) =⇒ A ̸∈ LD(TM))

• If B is recognizable, then A is recognizable (B ∈ LR(TM) =⇒ A ∈ LR(TM))

• If A is unrecognizable, then B is unrecognizable (B ̸∈ LR(TM) =⇒ A ̸∈ LR(TM))

This about how going left is “simpler” and going right is “more unsolvable”. The relation-
ship between A,B if A ≤m B is that A lower bounds B, and B upper bounds A. The four
statements we mentioned are intuitive but require proof. We only prove the first one. The
other three are proved similarly.

Suppose that A ≤m B and B is decidable. Then there exists a computable function f
as our many-one reduction. We give a decider for A as follows.

Algorithm 3 Decider for A given f as the reduction A ≤m B and decider for B

on input w
compute f(w) ▷ This computation halts by definition of a computable function
if f(w) ∈ B then ▷ Since B is decidable, we can run its decider on f(w)

accept
else ▷ If the decider for B rejects, we reject

reject
end if ▷ Note this halts on all inputs, so it is a decider

1or mapping
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3 Some Reductions

We now use the method of reduction to show more undecidable problems.

3.1 An Acceptance Problem

Let
ATM = { ⟨M,w⟩ | M accepts w}

This language looks close to HALT , so it shouldn’t be surprising that it is also undecidable.
We will prove it is undecidable not by diagonalization, but by reduction. We will show
HALT ≤m ATM

2.
Assume to the contrary that ATM is decidable. We give a decider for HALT .

Algorithm 4 Decider for HALT given decider for ATM

on input ⟨M,w⟩
if ⟨M,w⟩ ∈ ATM then ▷ If M accepts w it certainly halts on w

accept
else ▷ If M doesn’t accept on w, it must reject or loop

build M ′ from M swapping accept and reject states qa, qr
if ⟨M ′, w⟩ ∈ ATM then ▷ M ′ accepts w ⇐⇒ M rejects w

accept ▷ If M rejects w, it certainly halts on w
else ▷ If M doesn’t accept or reject w, it must loop

reject
end if

end if ▷ Note this halts on all inputs, so it is a decider

Given that ATM was decidable, we were able to construct a decider for HALT . But
we know by diagonalization that HALT is undecidable, a contradiction. Therefore, we see
that ATM is undecidable. Note that ATM is recognizable and ATM is unrecognizable for
similar reasons to HALT and HALT .

3.2 An Emptiness Problem

Let
ETM = { ⟨M⟩ | L(M) = ∅ }

This language consists of encodings of Turing machines which accept nothing. We show
it is undecidable. The reduction for this one is slightly more advanced. There exists no
reduction ATM ≤m ETM

3 but we can do the reduction ATM ≤m ETM . By showing the
complement ETM is undecidable, so must be ETM .

Assume to the contrary ETM is decidable. We give a decider for ATM

Here, our decider constructs a new machine M ′ with hardcoded M,w. Now notice that
M ′ automatically rejects all strings which aren’t w. So L(M ′) = either ∅ or {w}. Which one

2Its notable the Sipser book does the reverse, showing ATM is undecidable by diagonalization, and then
showing HALT is undecidable by reduction, namely ATM ≤m HALT

3See the exercise in the Sipser book
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Algorithm 5 Decider for ATM given decider for ETM

on input ⟨M,w⟩
construct M ′ with M,w hardcoded
if ⟨M ′⟩ ∈ ETM then

reject
else

accept
end if

Algorithm 6 M ′ hardcoded from M,w

on input x
M = ...
w = ...
if x ̸= w then

reject
else

Simulate M on input w
if M accepts w then

M ′ accepts x
end if

end if

depends on what happens to M on input w. Our many-one reduction is f(⟨M,w⟩) = ⟨M ′⟩
such that

• if ⟨M ′⟩ ∈ ETM , then L(M ′) = ∅. So w ̸∈ L(M ′) so M must have rejected or looped
on w. Either way ⟨M,w⟩ ̸∈ ATM

• if ⟨M ′⟩ ̸∈ ETM , then L(M ′) = {w}. This was only true if M accepted w so we see
that ⟨M,w⟩ ∈ ATM .

We witness that ⟨M,w⟩ ∈ ATM ⇐⇒ ⟨M ′⟩ ̸∈ ETM ⇐⇒ ⟨M ′⟩ ∈ ETM so ATM ≤m ETM .
We conclude that ETM is undecidable.

3.3 An Equivalence Problem

The more languages we prove are undecidable, the easier the next ones become. We have
to make the educated decision on which undecidable language to reduce from, but atleast
we have the choice. Let

EQTM = { ⟨M1,M2⟩ | L(M1) = L(M2)}

This language is the set of encodings of pairs of Turing machines which recognize the same
language. We now prove it is undecidable. This reduction is much simpler, and we choose
to reduce from ETM to show ETM ≤m EQTM .

Assume to the contrary EQTM is decidable. We give a decider for ETM
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Algorithm 7 Decider for ETM given decider for EQTM

on input ⟨M⟩
Let M∅ be some hardcoded Turing machine to reject all strings
if ⟨M,M∅⟩ ∈ EQTM then

accept
else

reject
end if

This one is pretty simple. Its logically equivalent to def iszero(x): return x==0.
Our reduction is f(⟨M⟩) = ⟨M,M∅⟩. We observe that ⟨M⟩ ∈ ETM ⇐⇒ ⟨M,M∅⟩ ∈ EQTM

so ETM ≤m EQTM and EQTM is undecidable.
Of the languages we have shown, this one is the most applicable. Suppose you were given

some code and asked to rewrite it in a modern language. How do you know if your rewrite
is equivalent? I mean like semantically equivalent. On all inputs, the programs behave
identically and equivalently. Since this language is undecidable, there is no algorithm which
could take in both pieces of code and definitively say yes or no if they are semantically
equivalent. Thats why the best you can do is a thousand unit tests and hope there is no
missing case. This can never guarantee they are equivalent, but it can guarantee they may
be close enough you couldn’t notice a difference if there was one. Specifically for EQTM , it
is a “more unsolvable” problem than the ones we have shown. Lets prove it.

3.4 A “More Unsolvable” Problem

In general for a language L ⊆ Σ∗ and a class C ⊆ P(Σ∗), we say that L ∈ co-C if L ∈ C.
It is not true in general that C =co-C. We specifically say that a language is co-Turing
recognizable (or co-recognizable) if L ∈ LR(TM). Note that since HALT was recognizable
and not decidable, HALT is co-recognizable and not decidable. The languages which
are both recognizable and co-recognizable are exactly the decidable languages. This will
elucidate our map later on. To show a language isn’t recognizable, we may combine the
following facts

• If A ≤m B, and if A isn’t recognizable, niether is B

• ATM is recognizable and not decidable, ATM is co-recognizable, unrecognizable, and
not decidable.

• A ≤m B ⇐⇒ A ≤m B

We combine these facts to prove some B is unrecognizable by showing either of the following

ATM ≤m B ⇐⇒ ATM ≤m B

We can give a reduction from ATM to the complement of a language, to show a language
is unrecognizable. We have shown many undecidable languages, but could they perhaps
be recognizable or co-recognizable. Are there any which are neither recognizable nor co-
recognizable? Yes, lets prove it. We show EQTM is neither recognizable nor co-recognizable.
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In some sense, this makes it “more unsolvable” than any of the languages we have shown
so far. A recognizer for an undecidable language feels atleast half right4.

First we show EQTM is not recognizable. Sipser has a more informative reduction to
prove this. I found this shorter, cuter proof using only the calculus of reductions, but it is
less informative. Recall we proved ATM ≤m ETM . This implies ATM ≤m ETM . Also recall
we proved ETM ≤m EQTM . Many-one reducibility is a transitive relation (something you
should have to prove) so we see that

ATM ≤m ETM ≤m EQTM =⇒ ATM ≤m EQTM

Since ATM is unrecognizable, so is EQTM .
Now lets show EQTM isn’t co-recognizable. We equivalently show EQTM isn’t rec-

ognizable. We would show ATM ≤m EQTM but this is equivalent to ATM ≤m EQTM .
So it suffices to give a reduction from ATM to ETM . We want a computable function
f(⟨M,w⟩) = ⟨M1,M2⟩ such that

⟨M,w⟩ ∈ ATM ⇐⇒ ⟨M1,M2⟩ ∈ EQTM

Our reduction is as follows.

Algorithm 8 Reduction from ATM to EQTM

on input ⟨M,w⟩
build MΣ∗ to accept all strings
build M2 such that on input x, it runs M on w and accepts x if M accepts w
return ⟨M∗

Σ,M2⟩

Notice that L(MΣ∗) = Σ∗ obviously. So

⟨MΣ∗ ,M2⟩ ∈ EQTM ⇐⇒ L(M2) = Σ∗ ⇐⇒ M accepts w ⇐⇒ ⟨M,w⟩ ∈ ATM

We conclude that EQTM is not recognizable or even co-recognizable.

3.5 Language Problems for our Other Computational Models

What is the decidability these language problems relative to our other, weaker automata?
Consider the following table. Let D mean decidable and U mean undecidable.

A E EQ ALL

DFA, NFA, REGEX D D D D
CFG, PDA D D U U

TM, and more U U U U

Lets try to give a brief summary of what is an entire chapter of Sipser. Note that if we
have proved two kinds of computational models or automata to be equivalent, they should
both be decidable or both be undecidable. Otherwise, you could transform from one to the
other, and decide it.

4some other books even call recognizable languages semi-decidable
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• ADFA is decidable, simply run the word on the DFA. Similarly by the equivalence of
DFAs, NFAs, and regular expressions, they also all have decidable acceptance problem.

• EDFA is decidable. Treat the DFA like a graph and see if an accept state is reachable
from the start state using DFS or BFS or any other graph traversal algorithm. Sim-
ilarly, ALLDFA is decidable by checking to see if a reject state is reachable from the
start state.

• EQDFA is decidable. We didn’t prove it, but there exists an algorithm to convert
DFAs into a “normal form” where they are isomorphic (in a vertex and edge colored
graph sense) if they decide the same language. A regular language cannot have two
different looking DFAs for it and both of them be in this minimal normal form.

• ACFG is decidable. This was the point of Chomsky normal form. There also exists
the CYK dynamic programming algorithm to decide this.

• ECFG is decidable. For each non-terminal, you mark it if it is capable of producing
strings. You repeat this until you can test if the start non-terminal is capable of
producing strings.

• EQCFG, ALLCFG are both undecidable. This should surprise you. Its certainly seems
like a hard problem. While you can tell if a CFG produces any word, or a specific word,
how can you decide if a CFG doesn’t non-deterministically skip over some word? You
can’t. Since CFLs aren’t closed under complement, ECFG, ALLCFG do not have the
same duality like they do for the regular languages. The proof of this undecidability is
not beyond you, but it would simply take a lecture. It uses the method of computation
histories, which we will go into next lecture. This also implies that for two semantically
equivalent grammars, there doesn’t exist a normal or minimal form like there is for
DFAs. Chomsky normal form isn’t then really a “normal form”.

• For Turing machines, we proved that ATM , ETM , EQTM are undecidable. ALLTM is
undecidable for similar reasons. This also holds true for any Turing-complete compu-
tational model.

The takeaway here is that the more powerful a computer is, the less we can know about
the languages they decide, just from looking at their descriptions. Notice that these are all
language membership problems. All code problems are decidable. That would include things
like “This Turing machine has seventeen states”, easily checkable. We don’t care about the
computers at all. Our true love is the languages. We only use these computational models
as a tool to study the classes of languages that they characterize.

It took fourteen lectures, but we finally have enough information to give a full and com-
plete world map. Note that we are quite limited. By the Church-Turing Thesis, anything
beyond the decidable languages is incomprehensible. Unfathomable. The recognizable and
co-recognizable languages are atleast half fathomable. This may look like a complete map,
but we know the world is much bigger than what we can understand. There is an edge to
it. The part we can see is only countably many of the languages. A tiny pathetic window
into the vast scale of the uncountably large universe of languages.
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CS 4510 Automata and Complexity March 15th 2023

Lecture 15: Post’s Correspondence Problem

Lecturer: Abrahim Ladha Scribe(s): Samina Shiraj Mulani

1 Introduction

Last time we proved ATM , ETM , EQTM are undecidable. You may notice these are all
problems which are just variations of language acceptance problems. You should be asking
the following two questions:

• Are all language acceptance problems undecidable for Turing machines?

• Are the only useful unsolvable problems variations of language acceptance problems?

The answer to the first question is yes. Rice’s theorem states that all non-trivial semantic
properties of Turing machines are undecidable. This is not really a theorem about Turing
machines, rather it is about the recognizable languages. But we can really only study these
languages through the lens of Turing machines. A property is non-trivial if not every Turing
machine has or hasn’t the property. For example, the property “M is a Turing machine
which is a Turing machine” is trivial. You can show a property to be non-trivial by giving
one Turing machine with the property, and one without. A property is semantic if its about
the language instead of the encoding itself. A syntactic property is about the encoding
of the machine. For example, “M has 17 states”. Easily decidable, count the states. A
semantic property might be “M recognizes a language which has some (maybe different)
Turing machine to recognize the same language with 17 states”. Syntactic properties are
about the encodings. Semantic properties are about the languages. Intuitively, a semantic
property requires somehow knowing something about the execution of the machine without
simulating it.

The answer to the second question is no. The point of today’s lecture is only to show
you that there exists an unsolvable puzzle. The problem statement has nothing to do with
Turing machines. The existence of algorithmically unsolvable problems is not as conditional
as it feels on the Church-Turing Thesis. There do exist unsolvable problems with nothing to
do with language theory. Here, we give a puzzle with no algorithmic solution. It is provably
unsolvable.

2 Problem Statement

Let a “domino” or “tile” be a pair of strings, consisting of an upper and lower portion. For
example, a set of tiles could be{[

b

ca

]
,
[ a

ab

]
,
[ca
a

]
,

[
abc

c

]}
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We say a set has a “match”, if given unlimited copies of each tile, there exists a sequence
(possibly with repetition) where the concatenations of the top equal the concatentations of
the bottom. For example, given the previous set of tiles, consider the sequence 2,1,3,2,4.[ a

ab

] [ b

ca

] [ca
a

] [ a

ab

] [abc
c

]
• The top elements concatenated are a · b · ca · a · abc = abcaaaabc

• The bottom elements concatenated = ab · ca · a · a · abc = abcaaaabc

So this set has a match.
We prove that PCP is algorithmically unsolvable. There is no algorithm given a set of

tiles to determine if there is a match or not. Restated as decidability of a language

PCP = { ⟨P ⟩ | P is a set of tiles with a match } is undecidable.

The proof idea is simple but has lots of small details. First, lets explore its universality in
some way.

3 Proof Idea

3.1 Forcing a start

First note we can set up a set of tiles such that we can force any decision making procedure
to temper its behavior a certain way. For example, for the following set of tiles, the first
(and last) choices are fixed. Any procedure is tempered into picking the first tile first.{[

#b

#

]
,
[a
b

]
,

[
$

a$

]}
It is the only tile where the top and bottom begin with the same symbol. Similarly the

last tile for any match of this set (if it exists) is also forced.

3.2 Forcing a next tile with deficiency

For any decision making procedure, we can force it so that the next tile has to begin the
way we want it. Note that a decision making procedure need not make selections of tiles
sequentially. There is a lot of creative things algorithms can do. But if a certain tile set has
a match, then the nth tile must have the desired property we will force. Consider the set{[

#a

#

]
,
[a
a

]}
Suppose it was forced to choose the first tile.1 Now the “working strings” of the top and
the bottom are #a and a respectively. Since the top is longer than the bottom, the next

1Forget for a moment that the second tile by itself is a match for this set. We will show a way around
this later.
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tile is forced to have its bottom begin with an a. That means we can only choose tiles of
the form ...

a... .
Also notice this deficiency is never satisfied. A decision making procedure will be forced

to choose tiles ad infinitum. The working strings will always be #ak+1 and #ak. This idea,
intuitively can encode a Turing machine which loops.

Using these ideas, we can encode the transition function of a Turing machine into a set
of tiles. With the right setup, we can ensure that the tile instance only has a match if M
accepts w. We will force the first tile, then force each of the next tiles to behave according
to our Turing machine transition function. Then we will ensure there is a “cap piece” to
match the deficiency only if M accepts w.

4 Proof of Unsolvability

4.1 Computation History

A computation history is a sequence of configurations in some string encoding made useful.
Here, we will construct a set of tiles such that its only string match is this computation
history. for example, the following is a computation history for the following machine.

q0start qh

0 → 1,R

1 → 0,R

→ ,L

#q010#0q00#01q0 #0qh1 #

We may define an accepting computation history to be a computation history, where
the last configuration is an accepting one. Notice that an accepting computation history is
just a string which only exists if M accepts w. If M loops on w, such a computation history
would be infinite in length, and then not a string. If M rejected w, such a computation
history would end with a rejecting configuration instead of an accepting one. This is the
heart of the method of accepting computation histories. We will use the fact that this string
only exists if M accepts w, and we will create a set of tiles such that the only match is
the accepting computation history. Then the set of tiles only has a match if there exists an
accepting computation history, which only exists if M accepts w.

4.2 Construction

We begin our tile with this starting one.

[
#

#q0w1w2...wn#

]
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Notice that the next tile is forced to begin with q0 at the top. We will only add two2 such
tiles, one with q0a and the other with q0b, so that only one gets picked to match to q0w1.

qistart qj
a → b,R Given a right transition in our machine, our

configurations would change like qia → bqi.
So we emulate this in our tiles. We add one
tile per right move transition. If we have
transition δ(qi, a) = (qj , b, R), we add tile[
qia

bqj

]

qistart qj
a → b,L Of course, we must also simulate left moves,

so if δ(qi, a) = (qj , b, L), our configurations
would change looking like cqia → qicb. We
add one domino per selection of c. Suppose
Γ = {a, b, }. We need one for each pos-
sible left move of our machine. Note that
we added one tile per right move, but three
tiles per left move. This imbalance is just
an artifact of the way we encode a snap-
shot of the state of the machine as a string.[
aqia

qjab

]
,

[
bqia

qjbb

]
,

[
qia

qj b

]
I hope you see the pattern here. We have created a set of tiles such that the decisions

made to create a match are forced to simulate the Turing machine according to its transition
function. The first tile creates a deficiency on the top. As the next sequence of tiles are
forced fix this deficiency. As they do, they compute the next configuration and append it
to the bottom![a

a

]
,

[
b

b

]
,
[ ]

We need some more tiles to make sure ev-
erything is set up. We add one singleton
tile (shown on the left) ∀a ∈ Γ to make
copies of the rest of the tape for us. Re-
call in a sequence of configurations, only a
small local part of each sequential configu-
ration changes. Most of the tape remains
unchanged. These tiles are for performing
this copying for us.

2Technically |Γ| for a well defined transition function
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[
#

#

]
,

[
#

#

]
We also need a cap between configurations
and a way to use more space. Recall a config-
uration can have more blanks ( ) like leading
zeroes because the tape is infinite. We only
choose to write as many as necessary, one. If
we want more, it will have to be done for the
next configuration.[

aqa
qa

]
,

[
bqa
qa

]
,

[
qa
qa

]
The accept state being qa, we add the follow-
ing tiles. This basically has the qa “eat” the
rest of the tape. This is so our cap fits nicely.
Recall that on accepting/rejecting/halting,
the tape head may end where ever. This cre-
ates a slight amount of complexity for us, so
we use this to simplify. We do not need to
have the qa eat right if we modify the ma-
chine to loop all the way to the right just
before accepting.[

qa##

#

]
Once you reach the accept state in a Tur-
ing machine, you halt. However, our match
will keep going to clean up the tape only so
we can insert nice end cap. This completes
the match. Note we have no end cap for re-
jection. This cap can only be placed if M
accepts w.

You may have noticed we add tiles to not enforce the rule of a single start, like
[a
a

]
or[

#

#

]
. We now modify all our tiles to enforce the start we want is the actual start. Given a

set of dominoes we modify them in the following way. For u = u1...un, let

•u = •u1 • u2 • ... • un

u• = u1 • u2 • ... • un•

•u• = •u1 • u2 • ... • un•

Let

[
ts
bs

]
be the start tile,

[
te
be

]
be the end tile.

Given our set of tiles -

{[
ts
bs

] [
t1
b1

]
...

[
tk
bk

] [
te
be

]}
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We modify them like -

{[
•ts
•bs•

] [
•t1
b1•

]
...

[
•tk
bk•

] [
•te•
be•

]}

This can be generalized to make our reduction more like

ATM ≤m MPCP ≤m PCP

but this correctly makes the start and end tiles for out match exactly the ones we want. It
does come at the cost of using more symbols, and our match being twice as long. It is as if
we skipped over every other cell of the tape. Our final set of tiles is then[

•#
•# • q0 • w1 • w2 • ... • wn •#•

]
One start tile

[
•qi • a
b • qj•

]
For each right move transition like δ(qi, a) =
(qj , b, L) we add one tile[

•a • qi • a
qj • a • b•

]
,

[
•b • qi • a
qj • b • b•

]
,

[
• • qi • a
qj • • b•

]
For each left move transition like δ(qi, a) =
(qj , b, L), we add |Γ| tiles

[•a
a•

]
,

[
•b
b•

]
,
[•

•

] |Γ| tiles for copying

[
•#
#•

]
,

[
•#
•#•

]
two extra tiles to help between configurations

[
•a • qa

qa•

]
,

[
•b • qa

qa•

]
,

[
• • qa

qa•

]
either |Γ| or 2|Γ| tiles for eating

[
•qa •# •# •

#•

]
One end tile

Lets stress why the computation is correct. We begin like:

[
#

#C0

]
Then we are forced to add tiles in which the
tops match C0. By doing so, we have chosen
the bottom to compute and place C1[

#C0#

#C0#C1

]
Now, we must repeat, matching C1 to force
us to compute and place C2.
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[
#C0#C1#

#C0#C1#C2

]
And so on.

The only way we can match is if we fix the deficiency, and the only way to do that is
to place the end tile. We can only place the end tile if M accepts w. The match for our
set of tiles exists if and only if there is an accepting computation of M on w. We had no
reject end tile. If the machine loops, this computation history would be infinite and so there
would be no match. We see that our construction f(⟨M,w⟩) = ⟨P ⟩ is correct. Namely

⟨M,w⟩ ∈ ATM ⇐⇒ ⟨P ⟩ ∈ PCP

So we conclude PCP is undecidable.
For any kind of structure, we can note if there are enough degrees of freedom for us to

simulate the transition function of a Turing machine, but perhaps not too many to make
its problems too easy, any such structure will have unsolvable questions. This goes far be-
yond computational questions. There are unsolvable problems in combinatorics, geometry,
topology, and more. Now that we have shown a simple combinatorial problem which is
unsolvable, we can use this in further reductions.

5 Baba is You

Now we show Baba is You is undecidable. If we suppose that BABA was solvable, that is,
given any Baba is You level, there exists an algorithm to determine if it is winnable or not,
we claim then you could solve PCP , a problem we just proved unsolvable. Our reduction
would be added on like

ATM ≤m MPCP ≤m PCP ≤m BABA

The proof idea is given a set of tiles, to construct a Baba is You level which is winnable if
and only if the tile set has a match. A reappearing theme is that the intuition is clear, even
if the necessary gadgets are very complex.

• The paper: https://arxiv.org/abs/2205.00127

• The videos: https://www.youtube.com/playlist?list=PLE75TLHOnaOKrQsrhCUgOmuAX7l7dI66N

• The Baba is You level editor has online play where you can play other custom levels.
https://hempuli.itch.io/baba-is-you-level-editor-beta
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Lecture 16: Kolmogorov Complexity

Lecturer: Abrahim Ladha Scribe(s): Michael Wechsler

1 Introduction

Consider the following two strings:

1111111111 1101111101

The first string can be described simply. It has a relatively short description of just its
length. The second string is less simple. Maybe we couldn’t call it complex, necessarily,
but it is certainly less simple. If you were to describe it, your description would also have
to include information about the location of the two zeroes.

A measure is a function µ : {things} → R+ (or N), where µ(x) = 0 =⇒ x has nothing,
or none of “it”.If µ(x) > µ(y), then x has more of “it” than y. Examples of measures
include length, area, volume, for their respective objects. Cardinality is a measure on sets.

2 Definition

We want to construct a measure on strings for their “algorithmic complexity.” Given a
string, how hard is it to describe? Is it simple or complex? How much information does
the string communicate? Can we even measure this? We can try. What is a “description”
anyway? Lets follow our intuition towards a formalization. A program is a description! This
leads us to an intuitive definition. Define K : Σ∗ → N to be the Kolmogorov Complexity of
a string.

K(x) = the length of the shortest program to print x and halt.

Mathematically, this could be represented as

K(x) = min
p∈Π

(
|p| : U(p, ε) = x

)
(1)

x : the string
p : a program
Π : set of all programs
|p| : length of program (like a string)

U : universal simulator (runs p on ε)
p : program
ε : takes no input
x : prints x and halts; output x

2.1 Invariance of the Definition

Why did we say a program and not a Turing Machine? It is like asymptotic analysis in the
theory of algorithms. Our complexity measure is independent of the language it is written
in. Unlike the theory of algorithms, rather than rely on our intuition, we can prove this
independence.
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Consider the language specific definitions for Python and Rust, named Kpy and Krust.
By the Church-Turing Thesis, since Rust is Turing-Complete, we can certainly write a
Python interpreter in Rust. Let this program written in Rust to interpret Python be called
πpyinrust. Now, given any Python program, combined with this interpreter in Rust, we just
have a Rust program. It might look something roughly like

fn interpret(python_code: &str) {

...

}

fn main() {

let pyprog: &str = "#!/usr/bin/python3\ndef f()\n\t...";

interpret(pyprog)

}

Suppose there is a python program p.py with |p.py| = Kpy(x). This minimal Python
program can be used to create a Rust program, as seen above. We observe:

Krust(x) ≤ Kpy(x) + |πpyinrust| (2)

We can only say ≤ and not = since we do not know if there exists a smaller Rust program.
But the existence of this Rust program which prints x upper bounds Krust(x). Notice, by
the Church-Turing Thesis, that Python is also Turing-Complete. Thus, we can also write
a Rust interpreter in Python.1 By a symmetrical argument, there exists a Rust interpreter
in Python named πrustinpy and we observe:

Kpy(x) ≤ Krust(x) + |πrustinpy| (3)

Notice that our interpreters are independent of anything about x, like its complexity or
length. These interpreters are of constant size. You could have a python program of
a billion gigabytes, and the code to interpret the python program would remain a few
megabyte or whatever. Next, notice our two inequalities are symmetric. For any two
a, b ∈ N, if a ≤ b+O(1) and b ≤ a+O(1), then |a− b| ≤ O(1). We combine our inequalities
this way to get that there exists a constant c such that

∀x |Kpy(x)−Krust(x)| ≤ c (4)

So, the difference between our two algorithmic complexities only differs by some constant.
This can obviously be generalized for all Turing-complete programming languages. We may
drop the subscript and just consider K(x) rightfully as a universal definition.

1A Rust interpreter in Python seems far less useful than a Python interpreter in Rust. Yet, you should
imagine that someone could write such a program. For computability, we do not care about the difference
between compiled and interpreted. A compiled language is really a translation into the language of machine
instructions, which is then arguably just interpreted by the CPU. There do exist interpreters for traditionally
compiled languages, like C. This distinction is unimportant. Arbitrary.
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3 Examples

Here are some examples to understand Kolmogorov complexity better.

3.1 K(x)

Notice that for any x ∈ Σ∗, there exists a program to print it. Somewhat obviously, just
have the program contain the string hardcoded. Such a program may look like.

def f():

x = ’.......................’

print(x)

This program takes no input and prints x, for any x ∈ Σ∗. So we observe that

∀x K(x) ≤ |x|+ c (5)

where c is some constant independent of the input. For example, |“print()”| = 7, so c ≥ 7.
It is independent of the input, but dependent on the programming language, which we don’t
care about.

3.2 K(xx)

What about the Kolmogorov Complexity of some string concatenated with itself. What is
K(xx) in terms of x? A bad idea is to hardcode xx.

def badidea():

xx = ’.................................................................’

print(xx)

Rather than an upper bound of K(xx) ≤ |xx| + c = 2|x| + c, we can construct a program
to only store x instead of xx and then compute xx from x.

def goodidea():

x = ’..........................’

print(x.append(x))

This gives us a better upper bound of K(xx) ≤ |x|+ c′. Note that c′ > c since our program
needs the logic to compute xx from x. It’s still a constant though. For future reference, all
constants are not necessarily equal, but all are independent of the input.

3.3 K(xn)

What about many concatenations, like K(xn) for some n?

def f():

x = ’..........................’

n = .....

ans = ’’

for i in range(n): ans.append(x)

print(ans)
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The size of our program as a function of the input is |x| and |n| = log n. So

K(xn) ≤ |x|+ log n+ c (6)

Before, we didn’t need log n as it was only constantly many concatenations. Now we must
keep a counter. Also notice we need not hardcode x. What if there was a much shorter
way to compute x? Let g be some minimal program which takes no input and returns2 x.
Maybe its size is much smaller than the size of x (|g| << |x|).

def f():

x = g()

n = .....

ans = ’’

for i in range(n): ans.append(x)

print(ans)

Thus, K(xn) ≤ K(x) + log n+ c. We replaced the hardcoded x with a computation of
x.

3.4 K(xR)

What about xR, the reversal of string x? What is K(xR) in relation to K(x)? If some
program p prints x, we can create a program q to print xR. Note q is like p. It computes x,
but instead of immediately printing it, it computes x, reverses it, then prints it. We observe
this reversal operation is independent of the input, so |q| = |p|+c. Thus, |K(x)−K(xR)| ≤ c
for some constant c. This also underlines our intuition of K being a measure of natural
descriptive complexity. If a string is complex or simple, its reversal should remain complex
or simple. Our intuition on simple or complex strings is invariant to reversing.

4 Compression

Let’s get back to some intuition about randomness. Some strings appear to have very short,
simple descriptions, like 12

n
. A program to print this string needs to only really contain

information about n, which is much smaller than the length of the string. Others strings
appear to have long descriptions, or at least no short descriptions. We may say a string is
incompressible if K(x) ≥ |x| − c for some c. The shortest description of an incompressible
string isn’t much shorter than the string itself. We may say a string is compressible if it
is not incompressible. How many strings of length n are compressible by 2 bits? Just two
measly bits. Let’s compute it as a ratio:

strings of length n compressible by two bits

all strings of length n
=

|{x ∈ Σn | K(x) ≤ |x| − 2}|
|Σn|

≤ (7)

|{p ∈ Π | p a program with |p| ≤ n− 2}|
2n

≤
⋃n−2

i=0 Σi

2n
≤

∑n−2
i=0 2i

2n
=

2n−1

2n
=

1

2
(8)

2the difference between returning and printing is an engineering issue, and we don’t care about the
difference enough. Obviously if there is a program to return a string, there is a similarly sized program to
print the string.
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HALF?! Only half of the strings of length n are compressible by 2 bits. This generalizes so
only 1

4 are compressible by 3 bits and 1
2d−1 are compressible by d bits. This is a very lazy

upper bound3, but it’s still sufficient to show us that most strings are incompressible. Less
than 1

1000 strings are incompressible by 11 bits.
The stress is on “most” strings. We have found a deep connection between randomness

and information content. A uniformly random string has overwhelming probability to be
incompressible. The compressible strings are the lucky ones. If you have files many many
gigabytes in size, only 1/1000 of them are compressible by a byte or more.

Why does file compression work in practice? Consider some fixed setting, like images of
fixed dimension. Most images look like TV static. By most we mean in a uniformly random
sense, the color of each pixel being drawn according to a coin, you will generate an image
which looks like garbage. In contrast, most of the “useful” images generated by humans
are full of patterns for our pattern matching brain. A picture of a parrot may have a large
splotch of red. Lossy encodings like JPEG and lossless algorithms like Lempel-Ziv exploit
these patterns to generate short descriptions.

Back in the world of strings, the compressible strings are the lucky ones. If you were
to generate the bits of a string by a random coin flip, its going to have overwhelming
probability of having near equal number of zeroes and ones. With negligible, insignificant
probability would it have any exploitable pattern or structure. How likely is the string xx
or 1n as an output of this part of this random process? Most strings are incompressible
because most strings do not have any pattern.

Heres a deep remark. Although since we believe P ̸= NP, we are unable to compu-
tationally distinguish random strings from those produced by a pseudo-random generator.
Yet if an arbitrarily long random string is incompressible, arbitrarily long pseudo-random
strings all have short descriptions. Those descriptions being simply the algorithm of the
pseudo-random generator, the seed, and the string’s length.

5 Graph of K(x)

Lets try to plot K(x), but instead of K : Σ∗ → N, consider K : N → N. We witness the
following behavior of K.

• K(x) grows unbounded. ∄c ∀x K(x) < c. To prove this, consider n such that
K(1n) > c. Note that n can get really big, but c cannot. The function must be
growing.

• K(x) “hugs” log x. We proved most strings are incrompressible, so the graph should
hover near log x for most x.

• K(x) dips infinitely often. A small program for one string implies an infinite family
of small programs for an infinite family of strings. We showed that K(x) ≈ K(xR).
A description of a string being simple or complex does not depend on the direction
we read it. This same intuition can be used to see that K(x) ≈ K(2x) ≈ K(3x) ≈
K(2x) ≈ K(22

x
) ≈ K(x+

√
x) and so on.

3it’s much larger than actual amount. We were extremely generous with our overestimation and still
concluded a very small upper bound.
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• K(x) has continuous properties. Recall the definition of continuity of a real valued
function. We say f is continuous if when x, x+ ε are close, so are f(x), f(x+ ε). This
means |x−x0| < c1 =⇒ |f(x)−f(x0)| < c2. In terms ofK(x), ∀x, |K(x)−K(x±1)| <
c. Take the program that prints x. Modify it to add 1, now you have a program to
print x+ 1. Note that K(x) cannot actually be continuous, as it is discretely valued.
But it may not have a sporadic behavior if you were to plot it like a line.

A plot of K(x) with the following properties might look like the figure.

6 K(x) is not computable

We have a imagined4 graph of K(x), but we never gave an algorithm. That’s because
there is none. K(x) is not a computable function. We will prove this with diagonalization.
Assume to the contrary K(x) is computable, and there is a program which may compute
it. Then we may construct the following algorithm.

Algorithm 1 M

on input w
for x ∈ Σ∗ lexographically do

if K(x) > |w| then
print x
halt

end if
end for

4I traced this from the Li Vitanyi book
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On input w, it searches for the smallest lexographic string with Kolmogorov Complexity
greater than the length of w. The for loop iterates like x ∈ {ε, 0, 1, 00, 01, . . .}. What is
M on input ⟨M⟩ or M(⟨M⟩)? As the algorithm proceeds, M(⟨M⟩) will search for some
smallest string x such that K(x) > | ⟨M⟩ | and print it. But since M itself prints this x, we
see that K(x) ≤ | ⟨M⟩ |. A contradiction. It is impossible for both a > b and a ≤ b to both
be true. Thus, K(x) is not computable.

Note this proof is a little rough, but perhaps you get the picture. Kolmogorov complexity
is defined for machines which take no input, but here we allow M to take input. The way
around this would be to encode M somehow with its own size. This is possible but requires
a little math. You couldn’t just compute the size, then hardcode it in, as this would then
change the size. There also exists something called Kleene’s recursion theorem, which allows
a program to obtain a copy of its own description, and compute with it. I didn’t want to
get into these details.

7 The Method of Incompressibility

This is a useful proof technique derived from Kolmogorov Complexity. Like how the pi-
geonhole principle shows existence of an object with some desired property, the method of
incompressibility shows most objects have some desired property. Here, we mean “most”,
truly in a Kolmogorov-random sense. It is one of the strongest techniques we have for
average case and worst case lower bounds. The proofs usually follow some similar struc-
ture. You assume something to the contrary, and then show that this implies some succinct
description of an incompressible object.

7.1 Infinitude of the Primes

There are infinitely many primes. There is a classic proof due to Euclid you may know.
There are many other proofs of this result as well. Here, we will prove it using the method
of incompressibility.

Suppose there are only finitely many primes, p1, . . . , pm. Then ∀n ∈ N, ∃e1, . . . , em
such that n = pe11 · · · pemm . Thus, ⟨e1, . . . , em⟩ is a description of n The program to print n
would have hardcoded e1, ..., ek. It would bruteforce recompute all the primes, and then
compute n = p1

e1 · ... · pemm and print it. Note that each ei can be described in log ei bits,
so K(n) ≤ log e1 + · · · + log em. A worse case is that n is a prime power, so if n = peii for
some i, then ei = logpi n. It follows then that each ei ≤ log n.

K(n) ≤ log e1 + · · ·+ log em ≤ log logn+ · · · log logn ≤ m log logn (9)

where m is independent of the input. So, ∀n, K(n) = O(log log n). For any incompressible
n, we have a contradiction.

We showed that if there were finitely many primes, then every number could be de-
scribed succinctly by its prime powers. But we know most numbers are incompressible. We
concluded that ∀n, K(n) = O(log log n), but we know for most n that K(n) = Ω(logn).
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7.2 Proving non-regularity of languages

Let me give you a tool I am calling this the “extremely weak KC-regularity lemma”. The
book by Li and Vitanyi has two generalizations of this. I have tried to simplify it enough
just to demonstrate it in part of a lecture. Tto show you some application of Kolmogorov
complexity to something you already know.

Assume L is regular. Let xy ∈ L where |xy| is some function of n, and y is the minimal
string such that xy ∈ L (xy′ ∈ L with larger y′ may exist). Then K(y) = O(1).

7.2.1 Proof

If L is regular, there exists a DFA, D, for it. Run x on D to get to some state qi. Since y
is the minimal suffix of xy (∄y′ for which xy′ ∈ L and |y′| < |y|), y is the minimal string
to bring D from state qi to an accept state. Then, D, qi, and this discussion are a unique
description of string y. Thus, K(y) ≤ |D|+ |qi|+ c. Recall the F in DFA stands for finite,
so K(y) ≤ |D|+ |qi|+ c = O(1).

7.2.2 How to Use the Lemma

We will use the extremely weak lemma to prove languages are not regular. Follow this
recipe to apply the lemma

1. Assume to the contrary L is regular

2. Choose some xy ∈ L with |xy| is a function of some n. You just can’t choose xy to
be constant, and technically you are choosing an infinite family of strings instead of
just one. It may make more sense in the following examples.

3. Choose x. Compute y from xy and x, ensure that the desired y is minimal and also
a function of n. Do not choose xy and x such that |y| = O(1).

4. Apply the lemma to get K(y) is O(1)

5. But note that as the complexity of y should grow as something greater than a constant.

6. Reach a contradiction, and conclude.

7.2.3 {anbn | n ∈ N}

We will write this proof out in the explicit steps.

1. Assume to the contrary L = {anbn | n ∈ N} is regular

2. Choose xy = anbn

3. Choose x = an. Thus, y = bn and is minimal

4. By the lemma, K(bn) = O(1)

5. But note that this is false for large enough n. The complexity of the string bn will
grow as a function of n.

6. We have found a contradiction and L is therefore not regular.
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7.2.4 {1n2 | n ∈ N}

The point of using the Kolmogorov complexity instead of pumping is so we get fast, terse,
correct proofs of non-regularity. We will do the following proofs in this spirit.

Assume to the contrary L = {1n2 | n ∈ N} is regular. Choose xy = 1(n+1)2 and x = 1n
2
.

Thus, y = 1(n+1)2−n2
= 12n+1 and is minimal. By the lemma, K(12n+1) = O(1). But n

may get arbitrarily large, a contradiction.
See how fast that proof was?

7.2.5 {wwR | w ∈ Σ∗}

Assume to the contrary L = {wwR | w ∈ Σ∗} is regular. Choose xy = (ab)n(ba)n and
x = (ab)n. Thus, y = (ba)n and is minimal. By the lemma, K((ba)n) = O(1), but K((ba)n)
grows as a function of n, a contradiction.

These proofs looks easy, because they hide quite a bit of the mechanics, and some things
can go wrong. For example, if you chose xy = anan and x = an, then a minimal y would
not be y = an, but it would be y = a or aa. These are not a function of some n, and we
would not reach a contradiction. Like pumping, choosing a good string (in this case, xy) is
important. The stronger version of this lemma is more difficult but makes this issue clearer.

7.2.6 {1p | p is prime }

Assume to the contrary L = {1p | p is prime} is regular. Choose xy = 1p, where p is the
(k + 1)th prime. Choose x = 1p

′
, where p′ is the kth prime. Thus, y = 1p−p′ is minimal.

By the lemma, K(1p−p′) = O(1), but the difference between primes grows unbounded, a
contradiction.

8 A Hint Towards Computational Learning Theory

Suppose we loosened our definition of K(x) so that the programs to print x need not be
perfect, only approximate. Recall, our definition that K(x) = “the length of the shortest
program to print string x”. Suppose the following synonym substitutions were made:

• length → size

• shortest → simplest

• program → description

• prints → approximates

• string → dataset

Now, we have K(x) = “the size of the simplest description which approximates dataset x”.
That sounds a lot like Occam’s Razor. Following this logic, you could formalize Occam’s
Razor under PAC5 learning. In practice, since K(x) is not computable, there is much more
success with computable restrictions, such as

5Probably Approximate Correct
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Kt(x) = min
p∈Π

{|p| : U(p, ε) = x and halts in t(|x|) steps} (10)

9 Further Reading

You have to look at the Li Vitanyi book. Chapter two may guide you towards under-
standing more about the complexity itself. Chapter six will give you may applications of
the method of incompressibility. These include Turing machine simulation lower bounds,
average case complexity of heapsort, Hastad’s switching lemma for circuit lower bounds,
and much more. Chapter eight has some connections between Kolmogorov complexity and
information theory. I also recommend you read 6.4 of the Sipser book and maybe this old
worksheet of mine https://ladha.me/files/sectionX/kolmogorov.pdf
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CS 4510 Automata and Complexity 3/29/2023

Lecture 17: Complexity Classes

Lecturer: Abrahim Ladha Scribe(s): Akshay Kulkarni

1 Introduction

1.1 Motivation

We begin our final unit entirely on computational complexity. This lecture will simply
consist of some early and motivating theorems, mostly before the development of NP-
completeness.

First we need a good computational model of a “hard” or “easy” computation. There is
a reason I have been beating you with Turing machines. Turing machines make an excellent
model for complexity. Recall that a Turing machine performs a constant amount of work
in unit time. If more work is to be done, successive steps must be taken. This is exactly
what makes it an excellent model, because this is exactly how algorithms work in reality
There did exist historically some functional but Turing-complete models of computation,
and they do not have this property. For example, there exists a lambda calculi for string
copying. It can produce xx from x in a single step. It might look like λx[xx]. This isn’t as
good of a model, as to copy an arbitrarily long string should take some number of steps as
a function of the length of the string. Longer strings should take longer to copy. It is not
clear here what the “step” is in a functional model, but it certainly clear what a step is for
a Turing machine.

1.2 Turing Machine Variants

Does the variant and choice of Turing machine matter?. For now, we set aside the non-
deterministic Turing machine (NTM) and only consider reasonable and realizable models.
Consider the language of palindromes PAL = {wwR | w ∈ Σ∗}. There is an algorithm to
decide PAL on a single-tape deterministic Turing machine (DTM). Check the first symbol,
then the nth symbol, then the second symbol, and so on. The limitation of this machine is
that it is not random access. To read the last symbol starting from the first takes a linear
number of steps because the tape head has to loop over the entire input. To decide PAL,
this takes n+ (1) + (n− 2) + 1 + · · · = O(n2) by Gauss’s trick.
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We can give a better algorithm on a two-tape DTM as follows. Copy the input to a
second tape, reset one tape head. Loop both heads in opposite directions on the tape,
comparing symbols. These three steps each take linear time giving a O(n) time algorithm
on our two tape DTM.

Obviously, any stronger model must also take at least linear time, as to decide if wwR ∈
PAL must look at all the symbols for correctness1. Can a single-tape DTM decide PAL in
O(n) or even o(n2) time? Surprisingly, no. any single tape deterministic Turing machine to
decide PAL must take Ω(n2) (and so Θ(n2)) steps. This is surprising! It means on a one
tape DTM, there is no way to do better for this language than the obvious way. There are

1Most algorithms should take linear time. If an algorithm takes sublinear time, it doesn’t even have time
to look at the entire input, so it could only compute some toy language like a regular one. For example
checking if the first symbol is a one takes constant time. Binary search is sublinear, but this is only on the
random access model, not on a Turing machine. Still, binary search is efficient because it doesn’t have to
look at the entire input.
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two proofs, a more classic combinatorial one, and one which uses Kolmogorov complexity.
Essentially, if a machine could decide PAL in o(n2) time, you could use this machine to
compress an incompressible string. I recommend this proof as your final project.

2 P

Let TIME(f(n)) := be the class of languages decidable by a Turing machine in f(n) steps.
Similarly define NTIME(f(n)), SPACE((f(n)),NSPACE(f(n)). Let

P =
∞⋃
k=0

TIME(nk)

Why is P a good definition of the class of intuitively efficient algorithms? We give some
arguments in favor

1. Most problems seem to have naive, trivial, brute-force solutions putting the problems
atleast in EXP. If there exists a polynomial time algorithm, then either the problem is
trivial, ridiculous, or we have some deeper intuition about what the problem actually
is (i.e. mathematical theory). An exponential time algorithm may be simple, but a
polynomial time algorithm usually requires a non-trivial understanding of the struc-
ture of the problem itself. For example consider graph traversal. A bad way would be
to enumerate all paths and check them this way. A better way is to notice how any
sub-path of a path is itself a path. The shortest path from s to t cannot be longer
than the shortest path from s to t through some v. This recurrent structure is what
leads to efficient algorithms like DFS/BFS/Dijkstra’s and so on.

2. Polynomials are closed under operations which our intuition of “efficient” is also closed
under. If you have two algorithms A,B. If one or both is inefficient, then the com-
position, running both of them sequentially, should intuitively be inefficient. If both
are efficient, then running both sequentially should be efficient. If f(x), g(x) are poly-
nomials, then f(x) + g(x), f(x)g(x), f(g(x)) are also polynomials. A combination of
efficient algorithms should be efficient, and a combination of efficient and inefficient
algorithms should be inefficient. Polynomials preserve this.

3. Although there exist languages with O(n100) algorithms which require Ω(n99) steps,
we don’t have any practical examples of this. The highest polynomial run time you
would see in an algorithms course might be cubic time O(n3)2. The highest polynomial
run time I know is for the LLL algorithm. In O(n8) time, it finds a short orthonormal
basis of a lattice. Its poly-time, but practically infeasible. It would appear to stall
on reasonably small inputs. However, the achievement of the authors was that they
were able to bring the problem from far beyond P into P. Once you get a polytime
algorithm at all, it seems likely in practice that it can be improved. There were
several papers on “pruning” which make the algorithm more efficient in a way thats

2Like chain matrix multiplication. Maybe Bellman-Ford on a dense graph. Most things appeared to be
linear or quadratic time.
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hard to asymptotically measure. The engineers will get a hold of the problem and
make it practicality efficient, even optimizing the constants. Although the vanilla
algorithm may not appear to complete in reasonable time on most inputs, the version
of the algorithm which is included in most libraries, it appears to halt instantly on
all inputs you could test. This is one example, but the case is evident for many other
algorithms. If there is enough intuition to give a polynomial time algorithm at all, its
likely this intuition can be extended and the problem can be made easier and easier.
The languages which are solvable in Ω(n99) are nonconstructive, useless. They aren’t
real practical problems, and are designed via diagonalization to have this property,
and do nothing else.

4. All Turing machine variants appear to simulate each other with at most polynomial
overhead. What a word-RAM machine does is T steps takes a one-tape DTM T 4

steps. The word-RAM model is our best computer, and the one-tape DTM might be
our worst, yet the overhead is still only a polynomial. Although within P, they may
take different time for different languages, A definition of P is equivalent for all these
models. The extended Church-Turing Thesis says that not only are all these variants
as powerful as each other. The run-time of any one model to simulate another will
not have super polynomial overhead.

3 NP

Let

NP =
∞⋃
k=0

NTIME(nk)

The definition given in your algorithms course is that NP is the class of languages verifiable
in polynomial time. We now prove these definitions are equivalent. Let NP be the class
of languages decidable by a non-deterministic Turing machine which halts in a polynomial
number of steps. We say a language A ∈ NPv if there exists a deterministic polynomial
time verifier V for A. The verifier will take as input a word w and a witness or certificate
c and V (w, c) will accept or reject accordingly if w ∈ A.

Let A ∈ NPv, then there exists a polynomial time verifier V , which runs in O(nk) time
for some k. We will build a NTM to decide A as follows.

Algorithm 1 N on input w

Nondeterministically guess certificate c of max length nk

run V (w, c)
accept ⇐⇒ V accepts

Clearly, N runs in polynomial time. Since this is for all languages verifiable in polynomial
time, we see NPv ⊆ NP.

Let A ∈ NP, then there exists a polynomial time NTM to decide A. We show A is a
polynomial-time verifiable. Our witness c is just our nondeterministic choices. So, V is a
deterministic polynonial-time verifier correctly for A, so NP ⊆ NPv. Since we proved the
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Algorithm 2 V on input ⟨w, c⟩
Simulate N deterministically on w
if faced with a nondeterministic choice then

Get the next bit of c
end if
if current branch of N ’s computation accepts then

accept
end if

containment both ways, we see that NP = NPv, and may drop the subscript. From now on
when we talk about NP, we can use either definition based on conveineince.

4 P ⊆ NP

We prove P ⊆ NP in both ways, using both definitions of NP.

1. First, note that by the generalization of nondeterminism, every deterministic polynomial-
time Turing machine is also a nondeterministic Turing machine, so P ⊆ NP

2. If A ∈ P, then there exists a polynomial time algorithm to decide A. Ee prove A
is also verifiable in polynomial time. The verifier will simply ignore the witness and
simulate the polytime decider for A. This implies P ⊆ NP.

5 More Classes

PSPACE =
∞⋃
k=0

SPACE(nk)

L = SPACE(log(n))

We give some rough ideas about why the following chain holds.

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE ⊆ EXP ⊆ NEXP ⊆ EXPSPACE ⊆ NEXPSPACE

• L ⊆ NL follows from the generalization of non-determinism.

• NL ⊆ P follows from the fact there exists a polytime algorithm for an NL-complete
problem.

• P ⊆ NP as proved previously.

• NP ⊆ PSPACE, since sat ∈ SPACE(n). Recall that ∀L ∈ NP, L ≤p SAT.

• Later we will prove that PSPACE = NPSPACE, but this containment as shown follows
obviously

Note that PSPACE contains languages we think are decidable only in exponential time,
so we won’t discuss too much on the right half of this chain.
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6 More Questions than Answers

We have absolutely no idea how to solve P
?
= NP. We do understand to some level how hard

the problem3 actually is. The problem itself is connected via a massive web of implications
to many more problems.

Consider the following two subchains.

1.
L ⊆ P ⊆ NP ⊆ PSPACE

We can prove L ⊊ PSPACE. Since these are the left and right sides, one of the
containments in this chain must be strict. Note that if you could prove P = PSPACE,
this would imply that P = NP, so if P = PSPACE is an open problem. If you could
prove that L = P and NP = PSPACE, then it must be the case that P ̸= NP. These
are open problems as well.

2.
P ⊆ NP ⊆ EXP

Note that NP ⊆ EXP since you can give a deterministic exponential time algorithm
to brute force all polynomial sized certificates. We can prove P ⊊ EXP, so again there
exists a strict containment in this chain. Proving NP = EXP would imply P ̸= NP, so
NP = EXP is also an open problem.

The history of complexity theory is a history of failure. Any problem which could be

reasonably asked may accidentally imply something about P
?
= NP and thus becomes as

hard as the problem itself. The failure to solve this one problem has shifted major directions
in research over the past fifty years. Every new research direction, every new theorem, every
new foundation has been built with the motivation and direction to solve this one problem.
A massive effort has been undertaken in order to try and solve the problem with zero success.
We have built the shoulders of giants. Ironically, as we have understood the problem better,
we are farther away from solving the problem than we were when we began.

Besides these structural connections, there are many more ways which might resolve the
question. These include

• Proving existence or nonexistence of a one-way function

• Showing a super polynomial lower bound or a polynomial time algorithm for any
individual NP-complete problem.

• Giving a polytime algorithm to convert 3SAT instances into 2SAT ones.

• Proving that random generators are indistinguishable from psuedorandom ones.

• A proof that every property expressible by a second order existential statement is also
expressible in first order logic with a least fixed point operator

• There is no polynomially bounded propositional proof system.

And much much much more.
3Whenever I may refer in passing to “the problem”, I could only refer to the one problem, this problem.

P
?
= NP.
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CS 4510 Automata and Complexity 4/3/2023

Lecture 18: In and around NP

Lecturer: Abrahim Ladha Scribe(s): Michael Wechsler

This lecture could also be titled “The Cook-Levin Theorem and Ladner’s Theorem”.

1 Reductions

What’s the point of intractability and NP-completeness?1 Suppose you are given a task,
and asked to produce an algorithm for some problem, but you can’t. So, you then try to
prove the problem is intractable or unsolvable. This is pretty hard to do in practice, but it
can happen. More likely, you can prove the problem was NP-complete. That elevates it to
a special club: a class of problems all as hard as each other. A fast algorithm for one would
imply a fast algorithm for all, and that P = NP. There are thousands of such problems
across many domains.

We say for two languages A,B ⊆ Σ∗ that A is polytime reducible to B (A ≤p B) if ∃ a
function, f , which is computable (i.e. halts on all input) in polytime with

w ∈ A ⇐⇒ f(w) ∈ B

If A ≤p B, A lower bounds B and B upper bounds A. It is analogous to many-one reductions
(≤m), which are computable, but these are computable in polytime. ≤m can be used to
prove problems are as solvable/unsolvable as each other, while ≤p can be used to prove
problems are as easy or hard as each other.

2 NP-Completeness

We say language B is NP-complete if B ∈ NP and ∀L ∈ NP that L ≤p B. You may also
prove a language to be NP-complete much easier by using the transitivity of the ≤p relation.
Choose some known NP-complete language, A, and prove B ∈ NP and A ≤p B. Cook and
Levin proved for us independently that SAT is NP-complete, which means ∀L ∈ NP, L ≤p

SAT.

By the web of reductions, we have thousands of other NP-complete problems.

Circuit-SAT
↗

ALL of NP → SAT → 3-SAT Clique etc
↘ ↗

Independent Set
↘

Vertex Cover

1see the attached drawings of Garey and Johnson

18: In and around NP-1



This chain can go on and on, and contains cycles.2 These reductions only work if there is
known NP-complete problem, which we are going to prove. A reduction is just a tranfor-
mation from one language to one language which preserves correctness. The Cook-Levin
Theorem proves for every language in NP, there is a reduction to SAT. We will do it gener-
ically, for any language in NP.

3 SAT

Recall the definition of SAT:

• Variable: one of x1, x2, . . . , xl

• Literal: one of x1, x2, . . . , xl, ¬x1, ¬x2, . . . , ¬xl. A variable or its negation.

• Clause: an OR of literals, such as (x1 ∨ ¬x2 ∨ x3)

• CNF Formula: an AND of clauses, such as (x1 ∨ x2) ∧ (¬x3 ∨ x1)

• Assignment: a selection of x1, x2, . . . , xl ∈ {0, 1}. We say an assignment is satisfying
if when you plug in x1, x2, . . . , xl into a CNF formula that ϕ = 1.

SAT = {⟨ϕ⟩ | ϕ is a satisfiable CNF}

CNFs are surprisingly expressive. Usually in real-world constraint problems, you have a set
of constraints and must satisfy all of them, but there may be more than one way to satisfy
each. For example,

(x1 ∨ ¬y1) ∧ (¬x1 ∨ y1) ∧ . . . ∧ (xn ∨ ¬yn) ∧ (¬xn ∨ yn)

is true if and only if x1 = y1, . . . , xn = yn. x = x1 . . . xn and y = y1 . . . yn ⇒ x = y. This
formula is satisfiable if and only if x = y. This is a CNF for string equality.

4 Cook-Levin Theorem

We want to prove that ∀L ∈ NP, L ≤p SAT.

Obviously SAT ∈ NP since there is a verifier, V (ϕ, c), that checks if c is a satisfying assign-
ment to ϕ in polytime.

Let L ∈ NP. Then there exists a nondeterministic polytime machine, N , such that N
accepts w ⇐⇒ w ∈ L. Consider the computation history for N accepting w. We use this
to construct a CNF formula, Φ, such that w ∈ L ⇐⇒ Φ ∈ SAT. Φ will be satisfiable if
and only if N accepted w. The idea is conceptually simple but has many of little details.
Since L ∈ NP, N is at most polytime, say nt, and is then also polyspace, say ns. Take the
sequence of configurations of an accepting computation history C0, C1, . . . and line them
up in a table\tableau like so

2I hope you recall some of these reductions from the unit in your algorithms course. You should have
done many reductions, but all were conditional on the assumption that SAT was NP-complete. Here, we
finally prove it.
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# q0 1 1 1 #
# 0 q0 1 1 #
# 0 0 q0 1 #
# 0 0 0 q0 #
# 0 0 0 qa #

Note: There are nt rows and ns + 2ish columns

The dimension of the tableau is time by space = nt × ns, making it polynomial sized.
We will create a CNF formula, Φ, to loop over the table and check its correctness.

Φ = Φcell ∧ Φstart ∧ Φmove ∧ Φaccept

• Φcell = 1 ⇐⇒ exactly one symbol is in each cell of the table

• Φstart = 1 ⇐⇒ first row is the initial configuration

• Φmove = 1 ⇐⇒ the i+ 1th row is the Ci+1th configuration, following the ith row

• Φaccept = 1 ⇐⇒ there is an accepting configuration in the table

Let xi,j,s be the variables with 1 ≤ i ≤ nt, 1 ≤ j ≤ ns, s ∈ Q∪Γ∪{#} where xi,j,s = 1 ⇐⇒
cell [i, j] = s. xi,j,s means symbol s is in cell [i, j]. Let C = Q ∪ Γ ∪ {#}.

• Φcell = 1 ⇐⇒ exactly one symbol is in each cell of the table. For example, we want
a relationship like xi,j,a = 1 =⇒ xi,j,b = 0. We can do this by ANDing clauses which
make sure atleast one symbol is on for each cell, and no more than one is on for each
cell. This ensures each element of the table has exactly one symbol.

Φcell =
∧

1≤i≤nt

1≤j≤ns

[( ∨
s∈C

xi,j,s

)∧( ∧
s,t∈C
s ̸=t

(xi,j,s ∨ xi,j,t)
)]

∧
1≤i≤nt

1≤j≤ns

: double for loop over the entire two dimensional table

∨
s∈C

: guarantees at least one symbol is in each cell

∧
s,t∈C
s ̸=t

: guarantees no more than one symbol is in each cell

We are essentially using the syntax of SAT to write a program to check correctness of
our table. Its not essential to understand how this “programming language” works.
Its more important to understand that this was even possible.
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• Φstart = 1 ⇐⇒ first row is the initial configuration of N on w with appropriate
space.

Φstart = x1,1,# ∧ x1,2,q0 ∧ x1,3,w1 ∧ . . . ∧ x1,n+2,wn ∧ x1,n+3, ∧ . . . ∧ x1,ns−1, ∧ x1,ns,#

To satisfy Φstart, the corresponding table must have the first row of our desired con-
figuration

• Φaccept = 1 ⇐⇒ there is an accepting configuration in the table

Φaccept =
∨

1≤i≤nt

1≤j≤ns

xi,j,qa

Loop over the entire table to make sure qa symbol exists somewhere

• Φmove = 1 ⇐⇒ the i+ 1th row is the Ci+1th configuration, following the ith row

Φmove is the hardest one. We want it to enforce that each row follows the preceding
one by only legal moves according to the transition function δ of N . With the first
initial configuration enforced, we want Φmove to enforce row two is the second config-
uration and so on. The way Φmove will work is check every 2× 3 window of the table
and determine if it’s a legal 2× 3 window. For example, for transitions like

qi qj
b→ c,L a qi b

qj a c

this is a legal window. There are other legal 2× 3 windows like

a b c

a b c

a a qi
a a b

For this table, I have dotted a few windows near the head. If the whole table is legal,
the windows near the head are the only ones which aren’t copy windows. Convince
yourself that the i+1th row follows from the ith row if and only if every 2× 3 window
is legal. These are equivalent conditions.
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Φmove =
∧

1≤i≤nt

1≤j≤ns

[the (i, j) window is legal]

By legal, we mean according to δ of N . This whole proof is similar to the PCP proof.

Φmove =
∧

1≤i≤nt

1≤j≤ns

[
∨

a1,...,a6
is legal

(xi,j−1,a1 ∧ . . . ∧ xi+1,j+1,a6)]

∧
1≤i≤nt

1≤j≤ns

: double for-loop over two dimensional table, checking all 2× 3 windows

∨
a1,...,a6
is legal

(xi,j−1,a1 ∧ . . . ∧ xi+1,j+1,a6): checks if window i, j is legal

We finish by construction of

Φ = Φcell ∧ Φstart ∧ Φmove ∧ Φaccept

Note: Φ is satisfiable only if:

1. Each cell of the table contains exactly one symbol

2. The first row is a start configuration

3. The (i+ 1)th row is the Ci+1th configuration following the ith row as the Cth
i configu-

ration

4. One of the configurations is accepting

So Φ is satisfiable only if an accepting computations history of N on w exists, which can
only happen if there is a computation of N on w so w ∈ L ⇐⇒ Φ ∈ SAT

Now we argue that this reduction takes polytime to compute. Note that for a polynomial
sized table, each of the subformulas also took polynomial time to construct so the compu-
tation to build Φ takes polytime. We construct Φ by just a few for-loops. We observe L ≤p

SAT. Since SAT ∈ NP and ∀L ∈ NP, L ≤p SAT, we conclude SAT is NP-complete.

4.1 Importance of this Finding

Now that we have proven SAT is NP-complete, we may prove many other languages are
NP-complete, not by repeating the proof, but by a simple reduction. For example, if you
prove 3SAT ∈ NP and SAT ≤p 3SAT, then since we proved ∀L ∈ NP that L ≤p SAT,
we can use transitivity. L ≤p SAT ≤p 3SAT =⇒ L ≤p 3SAT. The reduction reuses and
transforms the proof, rather than redoing it. SAT is not the only language that could be
proved as a genesis NP-complete problem. Sipser and CRLS both include a proof by a
similar construction that CircuitSAT is NP-complete. Levin originally proved a kind of
tiling problem. Cook proved not SAT necessarily, but tautologies are NP-complete.
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SAT ∈ P =⇒ P = NP. To prove, recall ∀L ∈ NP that L ≤p SAT. So if SAT ∈ P, then
there is a polytime algorithm for SAT. Since every L ∈ NP is polytime reducible to SAT,
combining this reduction plus the polytime algorithm for SAT is a polytime algorithm for
L. So L ∈ P, but since L is any language in NP, we see NP ⊆ P. Since we know P ⊆ NP,
we conclude P = NP. We do not believe SAT has a polytime algorithm. We don’t even
believe SAT has a quasi-polytime algorithm.

5 Ladner’s Theorem

Not all languages in NP \P are NP-complete if P ̸= NP. We will prove it shortly. Factoring
is a candidate for an NP-intermediate problem. It is (believed) not to be in P, but has
sub-exponential time algorithms. The general number field sieve has a runtime for factor-
ing ∈ TIME(o((1 + ε)n)) ∀ε > 0. We believe that factoring cannot be in P, otherwise,
cryptography doesn’t exist. We say a function is quasi-polynomial if it is super polynomial,
yet subexponential. Such functions do exists, and algorithms exists with quasi-polynomial
run-time.

5.1 Exponential Time Hypothesis

The hardness of SAT can be formalized as an assumption, ETH = Exponential Time Hy-
pothesis. Essentially, ETH states SAT cannot be solved in subexponential time. It is a
stronger assumption than P ̸= NP since it implies P ̸= NP but also other things. If you
assume ETH, you are assuming SAT has no 2o(n) time algorithm. In certain proofs, if we
assume ETH instead of P ̸= NP, it will make some proofs easier.

This proof disproves this This proof proves this

5.2 The proof

We prove Ladner’s Theorem: If P ̸= NP then there exists languages which:

• are not in P

• are in NP

• are not NP-complete
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We are proving that if P ̸= NP then the NP-intermediate languages exist. If you could prove
these exists unconditionally, then of course you found a language in NP\P, and would prove
P ̸= NP. We will proceed by a kind of diagonalization, proving a weaker result. We will
assume ETH instead of P ̸= NP to get an easier proof with the same ideas.

Assume ETH. There is no sub-exponential time algorithm for SAT, SAT ̸∈ TIME(2o(n)).
Recall that we measure the run-time of an algorithm as a function of the input size. If we
take a reasonable problem, and then just pad on a bunch of stuff, we can say an algorithm
is sub-exponential in the padded size, even if it wasn’t sub-exponential in the true size. We
pad SAT by a quasi polynomial amount.

L = {⟨ϕ, 12
√

|ϕ|⟩ | ϕ ∈ SAT}

• First we show that L ∈ NP. Our witness is the assignment, same as SAT. Our verifier

V on input ⟨w, c⟩ checks if w is of the form ⟨ϕ, 12
√

|ϕ|⟩, doing some math to count the
padding. Then it checks if c is a satisfying assignment for ϕ. If it is then it accepts.
In terms of the size of the input, the verifier V takes polynomial time, so we see that
L ∈ NP

• Next we show L ̸∈ P. Suppose it was. Then there exists an algorithm, A, to decide L
in time polynomial in the size of the input. A runs in time O((n+2

√
n)k) for some k,

where n is the size of just the formula and not the padding. We give a sub-exponential
time algorithm, A′, for SAT. A′ decides SAT in time in O(2

√
n) + O((n + 2

√
n)k) =

2O(
√
n) = 2o(n). This violates our assumption of ETH, so L ̸∈ P

Algorithm 1 A′

on input ϕ

build ⟨ϕ, 12
√

|ϕ|⟩ = y
run A(y)

• Now we show L is not NP-complete. The proof idea is that if it was, there is a
reduction for it, such a reduction could be used to solve SAT too fast, violating
ETH. Assume to the contrary that L is NP-complete. Then there exists a polytime
computable reduction such that SAT ≤p L. This reduction function, f , works such

that f : ψ → ⟨ϕ, 12
√

|ϕ|⟩ and ψ ∈ SAT ⇐⇒ ⟨ϕ, 12
√

|ϕ|⟩ ∈ L, where ψ, ϕ may be
different. Since our f is polytime, there exists some k such that |f(ψ)| = nk. Any
polynomial time algorithm (here, a reduction) can only produce a polynomial-sized
output. It take time to write that output down. Here |ψ| = n, the size of the input.

Since the output is ⟨ϕ, 12
√

|ϕ|⟩ , ϕmust be small enough such that 2
√

|ϕ| ≤ |f(ϕ′)| = nk,
so

2
√

|ϕ| ≤ nk ⇒
√
|ϕ| ≤ k log n =⇒ |ϕ| ≤ (k log n)2

or that |ϕ| << n, o(n).

Since |ϕ| is much smaller than n, than |ψ|, its faster for us to brute force check
assignments of ϕ than of ψ. To see if ψ ∈ SAT, perform the polytime reduction and
try all assignments of ϕ. This will take time 2(k logn)2 = 2o(n), violating ETH.
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Therefore, we conclude that assuming ETH implies there exists a language L such that
L ̸∈ P, L ∈ NP, but L is not NP-complete. So the class NP-intermediate exists.

Note that the difficulty of the proof changes if we have to use the assumption P ̸= NP
instead of ETH. We reached a contradiction twice using the fact that SAT had a 2o(n) time
algorithm. If we had to do the full proof, we would have to show that SAT had a polytime
algorithm.
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Lecture 19: Savitch’s Theorem

Lecturer: Abrahim Ladha Scribe(s): Rahul

So far, we proved a few theorems in and around NP. We proved the Cook-Levin theorem,
that SAT was NP-complete. We also proved Ladner’s theorem, that if P ̸= NP then there
exists languages ̸∈ P, ∈ NP and not NP-complete. Today’s lecture will be on space, that
“other” resource. Space is a very different resource than time. After an algorithm finishes
running, you get the space back. You can never get the time back. This makes space both
a less interesting and more interesting resource to study since it uses techniques and tricks
which would not work for time. They are less applicable, but interesting in their own right.
For example, performing super-exponential search to use one less unit of space.

1 Space as a Resource

Recall TIME(f(n)), SPACE(f(n)) are the classes of languages decidable in f(n) time or
space, respectively. We prove the following containment chain:

TIME(f(n)) ⊆ SPACE(f(n)) ⊆ TIME(2O(f(n)))

Consider a language decidable in f(n) time. There exists a Turing machine which takes
f(n) steps to decide this language on inputs of length n. At each step, it may use at most
one new cell of the tape. So a machine which uses f(n) time can use no more than f(n)
space. The first containment then follows. We show a stronger result to prove the second
containment.

SPACE(f(n)) ⊆ NSPACE(f(n)) ⊆ TIME(2O(f(n)))

The first containment follows from the generalization of non-determinism. We can now
show the second containment in a creative way. Given a language decidable by a non-
deterministic Turing Machine in f(n) space, we want to show this language is decidable
deterministically in 2O(f(n)) time. We will do so by graph search! For some specific N,w,
let the configuration graph G be a directed graph such that each node corresponds to a
configuration of N on w. Note that if N runs in f(n) space, then this graph is not infinite.
There exists a bound of the possible number of vertices. Also notice that since as defined,
N must halt on all inputs, this graph does not contain a cycle.
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Note that we do not count the input as a part of the space used. In some models, the input is
on a separate read-only tape. Since our machine N is non-deterministic, our graph may have
a arity greater than one. We may assume it has arity no more than two. In order to show
NSPACE(f(n)) ⊆ TIME(2O(f(n))) we give an algorithm which runs in 2O(f(n)) deterministic
time. First using N,w build the configuration graph. Then we perform BFS from the start
configuration Co to an accepting one Ca. BFS is linear time in the size of input. This
graph has worst case 2O(f(n)) nodes, as that is the number of possible configurations of an
f(n) space machine. It also takes that long to build the graph, so we see this is a 2O(f(n))

deterministic algorithm so NSPACE(f(n)) ⊆ TIME(2O(f(n))).

2 Savitch’s Theorem

Our main result today:
NSPACE(f(n)) ⊆ SPACE(f2(n))

with some conditions on f . Let us first interpret this result. We somehow are able to “de-
nondeterminisfy” something with only polynomial overhead in the resource used. Could
such a technique apply to P vs NP? Probably not, or someone would have found it by
now. So although we only get polynomial space cost, we can infer we probably will get a
super-polynomial, maybe exponential time cost. Our deterministic algorithm may only use
f2(n) space, but it should probably use 2f(n) time to perform this simulation.

A second immediate remark is that since polynomials are closed under composition,
multiplication, we see NPSPACE = PSPACE. The study of space, already looks very different
than the study of time. This should be an analogous problem to P vs NP. Unlike that
problem, this result is unexpected, and we have been able to solve it.

Now onto the proof. Rather than some naive strategy, we are going to use divide and
conquer. We want to simulate a nondeterministic Turing machine N which uses f(n) space,
deterministically using no more than f2(n) space. If Co is the start configuration, Ca is the

accept configuration, and C is some other configuration, notice that Co

∗
⊢ Ca in t steps if

Co

∗
⊢ C in t/2 steps and C

∗
⊢ Ca in t/2 steps for some t.

This will be our divide and conquer recurrence. We brute force search for some C and
perform our recurrence in this way. Importantly, our recursive calls are run sequentially
and reuse space.

It certainly is correct. M is a deterministic simulator of N , so it decides the same
language. Now onto the analysis. If N uses f(n) space, we hope to show M simulates N
in no more than f2(n) space. For each recursive call, a stack frame containing Ci, Cj , t
is stored. Each level of recursion uses O(f(n)) space, as a worst case. Ci, Cj are of size
O(f(n)) since N uses f(n) space. Each level divides t = 2df(n) in half. It may help if you
recall anything about the Master theorem, or even geometric series. Here we won’t measure
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Algorithm 1 M(N,w) Deterministic simulator of N on w

C0 = start configuration of N on w
Ca = accepting configuration of N
d = chosen such that N has no more than 2df(n) configurations
Y IELDS(C0, Ca, 2

df(n))

Algorithm 2 Y IELDS(Ci, Cj , t)

if Ci = Cj then
return true

end if
if t = 1 then

if Ci ⊢ Cj in one step by δ of N then
return true

end if
else t > 1

for configuration C of N of size f(n) do
Y IELDS(Ci, C, t/2)
Y IELDS(C,Cj , t/2)
return true if both calls return true

end for
end if
return false

time, but space. The depth of our recursion tree is log t = log(2df(n)) = O(f(n)). Since
each level of our recursion tree takes O(f(n)) space and our recursion has O(f(n)) depth
we observe the total space used is O(f(n)) ·O(f(n)) = O(f2(n))

I mentioned that there were some restrictions on f(n). First is that we may assume
it is space-constructible, that M can compute f(n) within O(f(n)) space. Most obvious
functions have this property, but some crazy ones do not. Second is that f was super-linear,
that f(n) ≥ n. This can be improved to f(n) ≥ log(n) with some automata specification.
A final remark, Hartmanis came up with a similar idea but to prove a theorem about
context-free languages1.

3 PSPACE-completeness

Recall that SAT is NP-complete, a boolean formula might look like (x1 ∨ x2 ∨ x3). This is
not a boolean formula so much as it is a logical formula! We just hide the quantifiers. We
say a boolean formula is satisfiable if there exists a satisfying assignment. We could simply
quantify over the assignment, like ∃x1∃x2∃x3(x1 ∨ x2 ∨ x3).

What if we allow for universal quantifiers? Like ∀x1∀x2∃x3(x1 ∨x2 ∨x3)? This is called
TQBF: True Quantifies Boolean Formula. TQBF = { ϕ | ϕ is a true quantified boolean

1See this post by Lipton for some fascinating history of the theorem https://rjlipton.wpcomstaging.

com/2009/04/05/savitchs-theorem
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formula }. Turns out that as SAT is NP-Complete, TQBF PSPACE-complete. The intuition
is that since TQBF is a generalization of SAT, it should be harder than SAT.

Notice SAT has structure like most puzzles. A puzzle is a single-player device in which
you make a sequence of decisions to reach some goal. Intuitively, ∃x1,∃x2, ... is your sequence
of decisions. Many puzzles are NP-complete since they can encode this structure.

Notice TQBF has structure like two player games of perfect information. Consider a
TQBF with quantifiers like ∃∃∀∀∀∃∃... you can reformulate this into a TQBF with quan-
tifiers which only alternate, like ∃∀∃∀... With a little abuse of types, you turn two of the
same kind of quantifier into one as ∃x1∃x2 ≡ ∃(x1, x2). Having a TQBF with alternating
quantifiers looks like a game! It is a literal minimax. You make a choice, then for all possible
moves the opponent could make, then you make a choice, then the opponent, and so on.

Most two player games, under appropriate restrictions and generalizations, are PSPACE-
complete. Chess, checkers, Go and more. Some appropriate restrictions would be that the
game require perfect information (no shadowed areas of the map), be generalized in some
way2 and a polynomial bound on the depth of number of moves. Without this bound many
of these games are actually EXPTIME-complete although their proofs are less general.

2Recall that chess is played on a fixed game with a fixed number of pieces. There is no way to measure
its complexity as a function of some n, as its technically a finite game. Generalized chess is proven to be
PSPACE-complete if you generalize the board size as a function of n.
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Because of how we can interpret TQBF vs SAT, we can also intuitively say that games
are harder than puzzles. It should require a proof that TQBF is PSPACE-complete, like we
did for SAT, but we don’t have enough time.
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Lecture 20: Relativization
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1 Diagonalization

First we begin with a review of diagonalization. Diagonalization is a proof technique. You
order some elements, construct a “fixed point”, or a “diagonal”, and take its opposite,
reaching some kind of contradiction. We will reprove the halting problem, but this time,
using a functional notation.
Let φ1, φ2, ... be an enumeration of the recursive functions (these correspond to Turing ma-
chines which are allowed to loop). We prove that there is no total computable function h -

h(x, y) =

{
1 φx(y) halts

0 φx(y) loops

Assume to the contrary that h is total and computable. Consider the function d:

d(x) =

{
1 if h(x, x) = 0

loops if h(x, x) = 1

Certainly d exists since h does. d is a recursive function, so there must exist some i such
that d = φi. Consider d on its own index i.

d(i) = 1 ⇐⇒ h(i, i) = 0 ⇐⇒ φi(i) loops ⇐⇒ d(i) loops (1)

d(i) loops ⇐⇒ h(i, i) = 1 ⇐⇒ φi(i) halts ⇐⇒ d(i) halts (2)

We arrive at a contradiction. There cannot exist a total recursive function for h.

2 Time Hierarchy Theorem

Now we prove a weaker form of the time-hierarchy theorem. A hierarchy is like a ladder,
we are able to prove that more asymptotic time gives more power. The strongest form of
the theorem says

TIME(o(f(n)/ log f(n)) ⊊ TIME(f(n))

We prove a weaker form of the theorem to demonstrate the same technique. We show

∀k TIME(nk) ⊊ TIME(nk+1)
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The containment is obvious, so we only need to show existence of a language computable
in time O(nk+1) but not in time O(nk). We will diagonalize over all languages which run
in time nk and make sure our language runs in time nk+1.
Let M1,M2, ... be an enumeration of the Turing machines in TIME(nk). Construct a Turing
machine D as follows.

Algorithm 1

D on input wi

Compute n = |wi|
Simulate Mi on wi for n

k steps
if Mi accepts wi then

reject
end if
if Mi rejects wi then

accept
end if

Notice D on input wi returns 1 − Mi(wi). So ∄j such that L(D) = L(Mj), so L(D) ̸∈
TIME(nk). Since it differs from every nk-time machine, there is no nk time algorithm to
decide L(D). What is the cost of simulation? Turns out this is complicated but we can
safely upper bound that simulation of Mi for a single step takes at most O(n) steps for
the simulator. Since nkn = nk+1, we conclude L(D) ∈ TIME(nk+1). Two quick comments,
first, the nk machines are not enumerable, so this is only a rough proof idea. There is a fix
around that, but it can be quite messy. Second, notice that the tightness of our hierarchy
depends on the complexity of simulation. This can vary actually from this or that Turing
machine formalization. The fact there is a hierarchy at all is the take-away, rather than the
specific hierarchy itself.

3 Remarks

Both of these proofs had the same structure. We interacted with other machines but
only in a black-box way. We simulated them only to disagree with their output. We did
nothing with M except run it. We did not deal with any of the internal mechanics of
computation. We can separate the decidable from the undecidable and an infinite hierarchy
of deterministic time classes. Note that such a proof could also separate P from EXP. Could
we use such techniques to separate P from NP? Turns out, no. Thats the point of today’s
lecture.

4 Relativization

The oracle of Delphi was like a witch or a shaman. You would bring her gifts and she would
answer your questions. There would be no provided explanation. Antiquated version of a
magic eight ball. An oracle machine has some similar mysticism. It is a Turing Machine with
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an additional tape. It writes down a query on this special tape and issues an instruction.
Then the tape clears and all that is left is the answer, a 1 or 0. This occurs in unit time. We
formalize an oracle as a language A, and the oracle machine MA. This oracle machine MA

can test membership to language A in unit time. Many natural things we have discussed
appear to be representable in an oracle way. Nondeterminism was originally formulated like
an oracle. Both many-one and polytime reductions could be formalized in an oracle fashion.

For a class C and language A, we let CA be the languages decidable by C-machines
with oracle access to A. For example, consider the structure of PSAT. Certainly, any oracle
machine can ignore its oracle, so P ⊆ PSAT. Also notice that all of NP is deterministic
polytime computable relative to SAT. Since SAT is NP-complete under polynomial time
reduction, NP ⊆ PSAT. Certainly PSAT is very different than P. We won’t explain why, but
NPSAT is actually bigger than NP.

We don’t really care about comparing two classes, one with and one without the or-
acle. We care about a “relativized world”. One in which every machine has oracle ac-
cess. For some fixed A, what does the world look like? What is the relationship between
LA,PA,NPA,PSPACEA and so on. How does this relativized world differ from our own?
For each fixed A, there exists an entire separate world with its own language and rules and
relationships. We can relate these worlds to our own.
We say a proof “relativizes” if you can copy paste it from our world to the relativized world
with only a minor modification.

Algorithm 2

D on input wi

Compute n = |wi|
Simulate Mi on wi for n

k steps
if Mi accepts wi then

reject
end if
if Mi rejects wi then

accept
end if

Algorithm 3

DA on input wi

Compute n = |wi|
Simulate* Mi

A on wi for n
k steps

if Mi
A accepts wi then

reject
end if
if Mi

A rejects wi then
accept

end if

In our world, D simulates Mi. In the relativized world, DA simulates Mi
A. If Mi

A makes
an oracle call to A, DA simulates this instruction of Mi

A by calling its own oracle. Here
the simulation only has this slight difference. Could there exist a proof of diagonalization
for P ̸= NP? It might look like:

Algorithm 4

Enumerate P machines M0,M1, ...
D on input wi

Simulate Mi on wi

Return opposite

Somehow show L(D) ∈ NP

Algorithm 5

Enumerate PA machines M0,M1, ...
DA on input wi

Simulate* Mi
A on wi

Return opposite

Somehow show L(DA) ∈ NPA
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If a relativizing proof exists in our world, we say it relativizes to all worlds. If P ̸= NP
in our world, and it is provable in this way, then ∀A ,PA ̸= NPA. It holds in all relativized
worlds. However, if there exists A such that PA = NPA, then there exists a world whose
version of the problem is PA = NPA, so there cannot exist a relativizing proof that P ̸= NP
from our own. Similarly if ∃B, a relativized world where PB ̸= NPB, then there cannot
exist a relativizing proof that P = NP.We show two oracles A,B such that

PA = NPA PB = NPB

Since there exists two worlds, one where P = NP and one where P ̸= NP, no proof of

P
?
= NP in our world can generalize to all worlds. Our demonstration of contradictory

relativizations will prove that there is no relativizing proof of P vs NP in our world! You
cannot use diagonalization to separate P from NP!!!!!

5 A World Where its True

We choose A to elevate PA,NPA to the same class where non-determinism gives no power.
Certainly ∀A PA ⊆ NPA so we show for some A that NPA ⊆ PA. We will use space com-
plexity. Let A = TQBF. Then

NPA = NPTQBF ⊆ NPSPACE = PSPACE ⊆ PTQBF = PA

Relative to TQBF, every PSPACE language is decidable in nondeterministic polynomial
time. The second containment holds by Savitch’s theorem. The final one holds similarly to
why NP ⊆ PSAT. We observe then that relative to A = TQBF that NPA = PA.

6 A World Where its False

Showing oracle B such that PB ̸= NPB will be much harder. Ironically, we will construct B
by diagonalization. We want to show a language exists which could not be in PB. How we
will show it cannot be done in polynomial number of steps? For correctness, we will require
an exponential number of oracle queries. Since each query takes unit time, an exponential
number of queries implies that the machine to decide this language must take exponential
time, and and thus could not have been in PB.
Let LB = set of strings such that there is some string of the same length in B. We don’t
say which string to require making 2n queries.

LB = {w | ∃ x ∈ B with |x| = |w|}

Let M1
B,M2

B, ... be an ordering of the oracle machines of PB. Lets even suppose they are
weakly sorted to guarantee Mi

B halts in time ni on all inputs.
We construct B in a sequence of steps such that Mi

B does not decide LB is ensured in stage
i. At each stage, only a finite amount of strings have been decided to be in B and decided
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to not be in B.
Suppose we are stage i. Let w be the largest string in B. Choose n such that 2n > ni and
n > |w|. We will increase the knowledge about B such that Mi

B accepts 1n ⇐⇒ 1n /∈ LB.
Run Mi

B on 1n. On its query to oracle B, if it has been queried by that string before, the
oracle will respond consistently. If B has not seen the string before, it will prophesize no,
Since Mi

B runs in time ni, it does not have time to query B on all 2n strings of length n.
If Mi

B accepted 1n, all other strings of length n are declared not to be in B. If Mi
B rejected

1n, declare one string of length n to be in B. Therefore L(Mi
B) ̸= LB /∈ PB.

Why is LB ∈ NPB? Rather than testing all 2n strings against the oracle, nondeterministi-
cally guess the right one to test the oracle against. This takes unit time on an NPB machine
but exponential time on a PB machine. Since LB ∈ NPB \ PB, we observe PB ̸= NPB.

7 Frustration. Coping. Crying.

This result has set the stage for the next half-century of complexity research. Any proof
which could resolve P vs NP would genuinely have to use new techniques, ones which do
not relativize. We weren’t even sure at the time if such techniques existed! The last fifty
years has seen attempts trying to bend the rules. To list a few:

• Randomness: What if SAT is decidable in polytime by an algorithm which returns the
assignment correctly only two thirds of the time? Maybe the deterministic requirement
of the algorithm is too stringent.

• Approximation: What if there exists an algorithm for SAT to satisfy a majority of the
clauses in polytime, but this last stretch to all clauses requires exponential? Maybe
the correctness requirement of the algorithm is too stringent.

• Circuits: Proofs using circuits do not appear to relativize. Does there exist a super
polynomial lower bound on circuit size for SAT? Maybe the uniformity requirement
of the algorithm is too stringent.

All of these areas have been good at asking questions and bad at giving answers. We are
further from answering P vs NP than when the question was conjectured. The relativization
barrier was just the first hurdle, we would hit many many more. Truly, there is no harder
problem. No problem has produced more corpses than P vs NP.

20: Relativization-5



CS 4510 Automata and Complexity April 19, 2023

Lecture 19: P/poly

Lecturer: Abrahim Ladha Scribe(s): Rishabh Singhal

1 Review

Last time we proved that P vs NP has no relativizing proof. Today, we are going to explore
one direction into non-relativizing techniques.

2 Motivation from Hardware

First, why are black box techniques so common? Why were all the early proofs black box
anyway? Why were all the early proofs black box anyway? My hypothesis is that even
though a Turing Machine is a simplification of computation to its base essentials, it is still
too complicated. There is some state of a moving tape head that moves conditionally are
reading the tape. There is some transition function that may requires a lookup, so a similar
conditional read-move kind of device. It is not impossible to have a non-relativizing proof,
using Turing Machines, but it appears to be unobvious.

Go to youtube and search for some homemade Turing-machines. If the Turing machine
is truly a foundational computer, there should exist people building them. However, most
of the builds implement a Turing machine on top of some other computer! These are mostly
raspberry-pi style projects. There was only a single mechanical Turing machine I could find
which wasn’t implemented on top of some other kind of computer. Surprisingly, it was
made of wood!

If you are looking for interesting hardware computers, there appears to be a million
builds which use boolean circuits as a foundation instead of a Turing machine. There exists
boolean circuit constructions from water and tubes, dominoes, marble machines, and so on.

Why are most of the computer builds with circuits and not with Turing machines? I
thought the Turing machine was the foundational, most simplistic kind of computer? The
answer is the same as why most proofs up to the relativization barrier were black box.
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Figure 1: Circuit

The Turing machine has too many moving delicate parts. Even in minecraft, its easier to
build a circuit using redstone then a conditionally moving tape head with pistons. What
are the internals of a Turing machine? Its hard to say, its basically alive. What are the
internals of a circuit? Just more circuits. Basically a glorified pachinko machine. You break
a Turing machine into two, you have nothing. You break a circuit into two, you now have
two circuits. The fact that the internals are simpler to inspect, this makes them an excellent
candidate to sidestep the relativization barrier.

3 Circuits

A boolean circuit is a wiring of gates that is used to compute a boolean function {0, 1}n →
{0, 1}. We say a model of computation is uniform if it’s devices accept input of any arbitrary
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Figure 2:

size. These include TM’s, even DFA’s and PDA’s. Circuits however have a fixed input size.
A 32-bit adder will safely and correctly add inputs of less than 32 bits, but not more. A
circuit family is a collection {C0, C1, C2, ....} where each Ci is a circuit with i input wires
and one output wire. We say a circuit family {C0, C1, ...} decides some language L if

w ∈ L ⇐⇒ C|w|(w) = 1 (1)

The complexity of a circuit family is not something related to time but to the size of
the circuit, the number of gates as a function of n. We let the class SIZE(f(n)) denote
languages decidable by circuit families of size f(n). Surely this is not so different from time
complexity. You might think that SIZE(f(n)) ⊆ TIME(f(n)), but lets see what happens.
Let L ∈ SIZE(f(n)), then L has an f(n) sized circuit family. To build a Turing machine
to accept w ∈ L, we simply need to simulate the circuit C|w|. Each gate takes constant
time so this decides for L in time f(n) so L ∈ TIME(f(n)). The problem is you cannot
encode infinitely many boolean circuits into a constant-sized machine. What if you could
compute the circuits? This is our second roadblock, we made no mention of the fact for
any circuit family that f(n) → Cn need to be computable. In fact, the language HALT
in unary HALT = {1⟨M,w⟩|M halts on w} has a polynomial-sized circuit family since as it
turns out, all unary languages have polynomial-sized circuit families. We will elaborate on
this later.

Instead, for a more constructive proof, we prove

TIME(f(n)) ⊆ SIZE(f2(n)) (2)
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4 Cook-Levin

We proceed by conversion of computation history of a machine that runs in time f(n) to
a circuit of size f2(n). The proof is basically identical to the Cook-Levin theorem without
any polynomial restriction. First, convert Γ ∪ Q to binary, perhaps like {0, 1, q0, w} →
{00, 11, 10, 01}. We add in a bunch of these gates to represent the transition from now to
now. The tape, the sequential state updates of the machine during its execution, does not
seem to appear anywhere. It has not vanished, it is encoded in the intermediary wires!
This circuit exists to correctly simulate some fixed M on w. but w is provided on the
input wires in a suitable encoding. Since M runs in f(n) time, it can also use at most f(n)
space. The height of this circuit is the time, and the width is the space. So the number
of gates is c · f(n) · f(n), with the most gates being identity ones, but the others taking
a constant more than one to be represented in a reasonable circuit basis. Either way, for
L ∈ TIME(f(n)), we see L ∈ SIZE(f2(n)) completing the proof. Note that this could be
improved to build a circuit of size f(n) log f(n). Either way, we see that not only are circuit
families Turing-complete, they are also quite efficient!

5 Turing Machines which take Advice

For any class C and function f , we use C/f to denote the class of languages decidable by
C-machines given access to f(n) bits of advice. There exists a second tape in which some
string of answers is prewritten. The C machine may sequentially read from this tape to
“take advice”. Observe the following:

• C/0 = C

• If f < g then C/f < C/g

• P(Σ∗) ⊆ P/2n

• If f contains a one infinitely often, perhaps is the characteristic string of some unde-
cidable language, then C/f may contain undecidable languages.

6 P/poly

We denote P/poly as the class of languages decidable by a Turing Machine which halts in
polynomial time given access to a polynomial amount of advice. It turns out that P/poly is
also exactly the class of languages that have polynomial-sized circuit families. Let’s prove it.

Let L be decidable by a polynomial-sized circuit family then there exists a polynomial-
sized circuit for each input size. Choose a description of this circuit to be the advice. The
M on input w simply simulates w on Cn. This takes polynomial time so L ∈ P/poly.

Let L ∈ P/poly. We show there exists a polynomial-sized circuit family to be decidable L.
Since L ∈ P/poly there exists a polynomial time Turing Machine with access to polynomial
advice. Convert the polynomial machine to a polynomial-sized circuit, and simply hard
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code the advice, perhaps at the depth of the input. This resulting circuit is still polynomial
sized so we observe that L has a polynomial-sized circuit family.

From here on, we may simply refer to P/poly as languages with polynomial-sized circuit
families since we care about those more than machines which take advice.

It is true that P ⊆ P/poly by the advice definition. Note that this containment is strict
only since we allow non-computable circuit families. We could prove all unary languages
have polynomial-sized circuits, including the undecidable ones previously mentioned. Since
P can only contain decidable languages, the containment P ⊊ P/poly must be strict.
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Lecture 22: The Polynomial Hierarchy

Lecturer: Abrahim Ladha Scribe(s): Michael Wechsler

1 Motivation

We will characterize the same thing three ways and hopefully prove just one theorem.
Recall P is the class of languages we characterize as having a machine M which decides in
polynomial time.

M(w) accepts ⇐⇒ w ∈ L

Recall NP is the class of languages verifiable in polynomial time, or decidable in nondeter-
ministic polytime.

∃xM(w, x) accepts ⇐⇒ w ∈ L

You may either think of x as the witness of a deterministic verifier or as a sequence of
decisions or guesses that a nondeterministic machine makes. For M to run in polynomial
time, we require that x be polysized. Recall that an NTM accepts if there exists (∃) a
computation branch. You may also recall that SAT is NP-complete, and we say that ϕ ∈
SAT if there exists (∃) a satisfying assignment of the boolean variables of ϕ.

Recall coNP is the class of languages such that L ∈ NP ⇐⇒ L ∈ coNP. We can take
the logical complement1 of the definition of NP for a definition of coNP as

∀xM(w, x) accepts ⇐⇒ w ∈ L

Like SAT is NP-complete, coNP has its own complete problem called tautologies. TAUT
= { ϕ | every assignment of ϕ is satisfying}. We observe that NP and coNP have this
interesting duality. A ying-yang structure emerges. NP is characterized by the existential
quantifier ∃ (∃ a witness, ∃ an assignment of SAT, or ∃ an accepting computation). coNP
is characterized by the universal quantifier ∀ (∀ witnesses, ∀ assignments of TAUT, or ∀
branches must be accepting). This duality motivates our discussion.

2 Generalizations of NP and coNP

For any class C, define the class ∃C such that if M was a C-machine with a definition like

M(w) accepts ⇐⇒ w ∈ L ∈ C

then M ′ is a ∃C machine such that

∃xM ′(w, x) accepts ⇐⇒ w ∈ L ∈ ∃C
1It should really be “∀xM(w, x) rejects” but we don’t care abour rejection from L here, as we want to

care about acceptance into L. This distinction is arbitrary.
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We naturally augment these deciders to take on witnesses2. We similarly define the class
∀C.

What is ∃P? ∃xM(w, x) accepts ⇐⇒ w ∈ L and M runs in polytime. M is just
a polytime verifier! So ∃P = classes of languages verifiable in polytime. Thus ∃P = NP.
Similarly ∀P = coNP.

What is ∃∃P? ∃x1∃x2M(w, x1, x2) accepts and M is polytime? That’s just two wit-
nesses. It just complicates things. Each witness can be at most a polynomial number of
bits anyway, so two witnesses is just a constant larger so ∃∃P = ∃P = NP. Similarly,
∀∀P = ∀P = coNP. Anytime we have a sequence of the same quantifier, we may compress
them to one quantifier.

∃∃...∃P = ∃P = NP

What about ∃∀P and ∀∃P? Now things are getting interesting.

∃x1∀x2M(w, x1, x2) accepts ⇐⇒ w ∈ L ∈ ∃∀P

Note that we may add an ∃ quantifier to a ∀P machine which it ignores to show ∀P ⊆ ∃∀P.
We convert a ∀P machine to a ∃∀P machine which ignores this witness. Adding an ignored
parameter changes nothing of the program structure, so our machine still decides the same
language. Since we can perform this surgery, ∀P ⊆ ∃∀P. Similar logic can be used to show
∀P ⊆ ∀∃P and ∃P ⊆ ∀∃P and ∃P ⊆ ∃∀P. Observe that ∀∃P and ∃∀P appear to be larger
than ∃P and ∀P.

So does ∃∀P = ∀∃P? We don’t know! ∃∀P and ∀∃P appear to have the same duality
and dance that NP and coNP have.

2Although these auxilliary inputs maybe universally quantified and therefore not “witnessing” anything,
we will still call them witnesses.
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3 The Polynomial Hierarchy

We may repeat this argument on ∀∃P and ∃∀P as we did on ∃P and ∀P. We see by an
inductive or recursive argument this creates an infinite and alternating hierarchy. Countably
many more generalizations of NP and coNP and their dualities. Here we use arrows to show
containment to avoid too complex of a venn diagram.

Π0 = P = Σ0

NP = Π1 Σ1 = coNP

Π2 Σ2

Π3 Σ3

Π4 Σ4

· · · · · · Let Π0 = Σ0 = P and inductively define

Σi = ∃Πi−1 = ∃∀∃∀∃ . . .︸ ︷︷ ︸
i

P

Πi = ∀Σi−1 = ∀∃∀∃∀ . . .︸ ︷︷ ︸
i

P

It is important that the first quantifier of Σi

is existential and the first quantifier of Πi is
universal. We define the polynomial hierar-

chy to be the class PH =
∞⋃
i=0

Σi =
∞⋃
i=0

Πi. We

define a “level” of the polynomial hierarchy
to be Πi ∪ Σi for some i.

Note that by a generalizing the argument
we made for NP and coNP, we see

∀i Πi ⊆ Πi+1

∀i Σi ⊆ Σi+1

∀i Σi ⊆ Πi+1

∀i Πi ⊆ Σi+1

Whether or not these levels are strict is an
open problem. Each level is defined only
using finitely many quantifiers, so it would
appear that PH ⊆ PSPACE since TQBF is
a PSPACE-complete problem. If that con-
tainment is strict, it is also a an open prob-
lem. We would hope to show it is since
P ⊆ PH ⊊ PSPACE ⇒ P ̸= PSPACE. This is
truly a beautiful class with beautiful struc-
ture of mostly theoretical interest.

We give two more quick equivalent characterizations of the polynomial hierarchy. First
is using oracles:

Σ0 = P, Σ1 = NP, Σ2 = NPNP, Σ3 = NPNPNP
, Σi = NPNP...NP︸ ︷︷ ︸

i

, Πi = co-Σi

We only mention this and leave it unjustified, but it is perhaps believable. The second
characterization uses a generalized non-deterministic Turing Machine called an alternating
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Turing machine. While a nondeterministic Turing machine accepts if just one branch ac-
cepts, an alternating Turing machine may pick from two transition functions at any step if
it wants to require all branches to accept or just one:

∃

∃

NTM

∀

∃

∃

ATM

For AP = alternating polynomial time, since TQBF is PSPACE-complete, and an un-
bounded alternating polytime machine can simulate TQBF problems alternating quanti-
fiers. Like how SAT is NP-complete, TQBF is AP-complete, and so AP = PSPACE.

We say a Σi−machine is one in which the first branch is at an existential one, and there are
at most i existential or universal branching steps. We similarly define a Πi−machine as an
ATM which the first branching is a universal one, and there at most i universal or existen-
tial branching steps to depth i. Try to convince yourself that NP = Σi−TIME(poly), as you
reformulate many guesses into just one. Rather than make a sequence of nondeterministic
guesses, just make one bigger one. Why make two sequential coin flips when you can roll a
four sided die.

≡

Σi =
∞⋃
k=0

Σi-TIME(nk)

Πi =
∞⋃
k=0

Πi-TIME(nk)

Although the polynomial hierarchy may seem of a flamboyant, inapplicable interest, like
other part of complexity, there are deep connections and ties. It may also be used to
separate the complexity classes worth studying. Also most importantly, it looks cool.
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4 Collapse

If for any i, Πi = Σi then PH ⊆ Πi = Σi. The polynomial hierarchy collapses to this ith

level. Each Πi, Σi behave like a struct or pillar, supporting the levels above them. Were it
the case that two distinct pillars were the same, our tower of Babel collapses. We prove a
weaker idea, that if P = NP, then PH ⊆ P. That is, if Σ0 = Σ1, then the entire hierarchy
collapses to Σ0.

Assume P = NP. We proceed by induction. For i = 1, Πi = coNP and Σi = NP are
both ⊆ P by assumption. Now suppose that Πi−1,Σi−1 ⊆ P. We prove Σi ⊆ P. Since P is
closed under complement and coΣi = Πi, this will also prove Πi ⊆ P as desired. Let L ∈ Σi,
then

w ∈ L ⇐⇒ ∃x1∀x2 . . .︸ ︷︷ ︸
i times

M(w, x1, x2, . . .) accepts

Define
L′ = {⟨w, x1⟩ | ∀x2∃x3 . . .︸ ︷︷ ︸

i− 1 times

M(w, x1, x2, . . .) accepts }

Notice L′ ∈ Πi−1 since there are i− 1 quantifiers and it begins with ∀. By our assumption
that Πi−1 ⊆ P we see that L′ ∈ P. Thus, there exists a polytime algorithm for L′ called M ′

such that

w ∈ L′ ⇐⇒ M ′(w) accepts

We may tranform this definition of L′ into the original one for L to get

w ∈ L ⇐⇒ ∃x1M ′(w, x1) accepts

This is a polytime verifier, so L ∈ NP. Since we assumed P = NP,we observe that
L ∈ P. Since L was any Σi language, then Σi ⊆ P. So if P = NP, we may conclude that the
polynomial hierarchy collapses to its 0th level, to P, to ashes.

5 Karp-Lipton Theorem

This will be our final theorem of the class. Interpreting its statement is more difficult than
the actual proof. It plainly states:

NP ⊆ P/poly ⇒ PH ⊆ Π2 ∪ Σ2

If SAT has a polynomial sized circuit family, then we do not have a polynomial hierarchy,
it collapses to the second level. Originally Karp and Lipton proved it by a collapse to
the third level, but Sipser improved it to the second level. The proof idea is to show
Π2 ⊆ Σ2. Conversion of any ∀∃-sentence to a ∃∀-sentence means for any sentence higher in
the hierarchy, we can repeatedly alternate and compress quantifiers until a sentence with
many quantifiers is left with only two.

Let NP ⊆ P/poly, then SAT has a polynomial sized circuit family, {C0, C1, . . .}. Each
Cn takes as input an n-variable formula and outputs a single bit for yes/no if the input
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formula was satisfiable. By a decision-to-search transformation, there exists a circuit family
{C ′

0, C
′
1, . . .}. Where each C ′

n outputs n bits for not just if it was satisfiable or not, but
the satisfying assignment itself. Since each Cn is polynomially-sized, so is each C ′

n. This
decision-to-search transformation should be believable, but to give you an example suppose
we had a circuit to say if some formula ϕ was satisfiable or not. If x1 is the first variable of
ϕ, then ϕ ∧ x1 is a formula which is satisfiable if and only if ϕ was satisfiable, with x1 = 1.
We can play a hotter/colder game with the circuit families to infer not just if a formula
was satisfiable, but what the actual satisfying assignment was. This decision-to-search
transformation will incur only a polynomial overhead.

Let L ∈ Π2. Then

w ∈ L ⇐⇒ ∀x1∃x2M(w, x1, x2) accepts

We may convert M to a CNF φM using a Cook-Levin style construction. Note since
M runs in a polynomial number of steps, φM is polynomially sized, and its construction
takes polynomial time. Now, notice ∃k such that C ′

k(φM , w, x1) = x2. Since SAT has a
polynomial sized circuit family, there exists a polysized circuit to search for this witness
instead of quantifying over it. We can replace the existential quantification of x2 with a
computation of C ′

k. Then rather than actually computing C ′
k, we can just existentially

quantify over it. So our definition of L has an equivalent statement:

∀x1∃x2M(w, x1, x2) accepts ⇐⇒ ∃C ′
k∀x1M(w, x1, C

′
K(φM , w, x1)) accepts

We may simply use existential quantification to guess the C ′
k circuit. We converted a Π2

sentence into a Σ2 one! L ∈ Π2 ⇒ L ∈ Σ2 ⇒ Π2 ⊆ Σ2. We observe that if NP ⊆ P/poly,
we collapse PH.

6 Further Study

I want to conclude with some advice on how to self study complexity theory. Your journey
doesn’t have to end here if you don’t want it to. First, finish the Sipser book. It does not
contain everything, but it does contain the best proofs of what it does cover. I wish it had
a second volume. It’s coverage of randomness, interaction, cryptography, and more may
surprise you. Before you go further, you should definitely finish Sipser. After you finish
Sipser, go through the first six chapters of the Arora-Barak book. All the other chapters
(7+) cover an incredible breadth of material, and good pointers to other sources. These
may include communication complexity, quantum complexity, the complexity of counting,
and so on. Each of these chapters deserves (and has) their own books, but it’s an intro-
duction to these theories. You need to know what the things you don’t know are called in
order to google and learn them. Then go through Goldreich’s and Papadimitriou’s books.
Goldreich has 400 pages of incredible notes. Finally, I recommend the books The Nature
of Computation and Wigderson’s Mathematics and Computation. Both of these are light
on proofs, as a tradeoff for coming with incredible wisdom. If you want a proof, use the
other books. If you want to what a proof means, use Wigderson’s book. Of course, you
may use me as a resource. If you have any questions, or come across anything in your own
independent study, I would be happy to help and answer. Thank you for taking my class,
I had a lot of fun.
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• Introduction to the Theory of Computation, Michael Sipser 2012

• Computational Complexity: A Modern Approach, Sanjeev Arora and Boaz Barak,
2009

• Computational Complexity: A Conceptual Perspective, Oded Goldreich, 2008

• Computational Complexity, Christos Papadimitriou, 1994

• Mathematics and Computation, Avi Wigderson, 2019

• Goldreich’s encyclopedic lecture notes. 375 pages across two semesters. An invaluable
resource from 1999.
http://gen.lib.rus.ec/book/index.php?md5=fbb240574e6f5059fccdce95fab0ff38

• Hatami’s notes from 2022, also insanely useful.
https://www.cs.mcgill.ca/~hatami/comp531-F2022/files/Lectures.pdf
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