26

The computational model—and why it doesn’t matter

words, n a pair (A,b) where A is an m x n rational matrix and b is an m dimensional
rational vecto d out if there exists an n-dimensional vector x such that Ax = b.
The standard Gausstselimination algorithm solves this problem in O(n®) arithmetic
operations. But on a Turt achme each arithmetic operation has to be done in

problem) runs on a Turing machine in ti
required to represent aj,as, .. . That is, in Gaussian elimination, we
need to verify that all the 1ntermed1ate nu ed in the computation can be
represented by polynomially man g isWpes turn out to be the case
(for a related result

Arora Barak 2007

1.6.1 Why the model may not matter

We defined the classes of “computable” languages and P using Turing machines. Would
they be different if we had used a different computational model? Would these classes
be different for some advanced alien civilization, which has discovered computation
but with a different computational model than the Turing machine?

weakest one can simulate the strongest one with quadratic slow down. Thus polynomial
time is the same on all these variants, as is the set of computable problems.

tation were discovered, some quite bizarre. It was easily shown that the Turing machine
can simulate all of them with at most polynomial slowdown. Thus, the analog of P on
these models is no larger than that for the Turing machine.

ically realizable computation device—whether it’s based on silicon, DNA, neurons or
some other alien technology—can be simulated by a Turing machine. This implies that
the set of computable problems would be no larger on any other computational model
that on the Turing machine. (The CT thesis is not a theorem, merely a belief about the
nature of the world as we currently understand it.)

clear. The strong form of the CT thesis says that every physically realizable computation
model can be simulated by a TM with polynomial overhead (in other words, ¢ steps on
the model can be simulated in ¢ steps on the TM, where c is a constant that depends
upon the model). If true, it implies that the class P defined by the aliens will be the same
as ours. However, this strong form is somewhat controversial, in particular because
of models such as quantum computers (see Chapter 10), which do not appear to be
efficiently simulatable on TMs. However, it is still unclear if quantum computers can
be physically realized.

We already encountered variations on the Turing machine model, and saw that the

In the few decades after Church and Turing’s work, many other models of compu-

Most scientists believe the Church-Turing (CT) thesis, which states that every phys-

However, when it comes to efficiently computable problems, the situation is less

1.6.2 On the philosophicalN

The class P is felt to capture the no
procedures. Of course, one ma
ble” computation in th

ccision problems with “feasible” decision
TIME(nlOO) really represents “feasi-

100 js pro wely huge even for moderate

world since n



10 THE GENERAL THEORY OF COMPUTABLIITY [CHaP. 1

DEFINITION 2.5. ) ¢/. . ., xn) ts partially com-
putable if there exists a Turin } such that

f(xl, o« o e

In this case we say that . , T
total function, then A4S called computable.

on, f(xy, . . ., Ta) 1S @

1t 1s the concept of computable function that we propose to 1dentity
with the intuitive concept of effectively calculable function. A partially
computable function may be thought of as one for which we possess an
algorithm which enables us to compute its value for elements of its
domain, but which will have us computing forever in attempting to
obtain a functional value for an element not in its domain, without ever
assuring us that no value is forthcoming. In other words, when an
answer is forthcoming, the algorithm provides it; when no answer is
forthcoming, the algorithm has one spend an infinite amount of time in
a vain search for an answer. We shall now comment briefly on the
adequacy of our identification of effective calculability with computability
in the sense of Definition 2.5. The situation is quite analogous to that
met whenever one attempts to replace a vague concept, having a powerful
intuitive appeal, with an exact mathematical substitute. (An obvious
example is the area under a curve.) In such a case, it is, of course,
pointless to demand a mathematical proof of the equivalence of the two
concepts; the very vagueness of the intuitive concept precludes this.
However, it is possible to present arguments, having strong intuitive
appeal, which tend to make this identification extremely reasonable. We
shall outline several arguments of this sort.

Historically, proposals were made by a number of different persons
at about the same time (1936), mostly independently of one another, to
identify the concept of effectively calculable function with various pre-
cise concepts. In this connection we may mention Church’s notion of
\-definability,! the Herbrand-Godel-Kleene notion of general recursive-
ness,? Turing’s notion of computability? (defined in a manner differing
somewhat from that of the present work), Post’s notion of 1-definabelity,*
and Post’s notion of binormality.® These notions, which (except for the
third and fourth) were quite different in formulation, have all been proved
equivalent® in the sense that the classes of functions obtained are the

1 Cf. Church [1, 3].

2 Defined in Goédel [2]. The proposal to identify with effective calculability first
appeared in Church [1]. Cf. also Kleene [1, 4, 6]. .

3 Cf. Turing [1]. Davis 1958

4 Cf. Post [1].

8 Cf. Post [2, 3]; Rosenbloom [1].

¢ The equivalence of A\-definability with general recursiveness is proved in Kleene
[2]. The equivalence of A-definability with Turing’s notion of computability is




Sec. 2] COMPUTABLE FUNCTIONS 11

ame In each case. INow, the 1act that these diiflerent concepts have
urned out to be equivalent tends to make the identification of them
ith effective calculability the more reasonable.

Next, we may note that every computable function must surely be
egarded as effectively calculable. For let f(m) (for simplicity, we con-
ider a singulary function) be computable, and let Z be a Turing machine
hich computes f(m). Then, if we are given a number m,, we may begin
ith the instantaneous description a; = gimo = 111 - - - 1 and suc-

| R
mo+1
essively obtain instantaneous descriptions as, a3 . .., ap Where
12 ag— az3— * ° + — a, and where «, is terminal. Since f(m) is
putable, such a terminal a, must be obtainable in a finite number of
er of 1’s in a,.
‘“effective”’ is clear

a of Z, whether or not theé

n instantaneous description 8 such
that a = 8 (2), and if 3

flirmative, to determine which
B satisfies this ¢ n, it suffices to write @~ the form Pg;S;Q and to
locate that quadruple of Z, if one exists, that begins ¢; S;.

This indicates, at any rate, that our definition is not too “wide.”
Is it, perhaps, too ‘‘narrow’? An answer as satisfying as the one given
for the previous question is, presumably, not to be expected. For how
can we ever exclude the possibility of our being presented, some day
(perhaps by some extraterrestrial visitors), with a (perhaps extremely
complex) device or “oracle’’ that ‘computes’” a noncomputable func-
tion? However, there are fairly convincing reasons for believing that
this will never happen. It is possible to show directly, for various
possible theoretical computing devices which seem to possess greater
power than Turing machines, that any functions computed by them are,
in fact, computable. Thus, we might consider machines which could
move any number of squares to the right or left, or which operate on a
two-, three-, or one-hundred-dimensional tape, or which are capable of
inserting squares into their own tape. Now, it is not very difficult to
show that any computation that could be carried out by such a machine
can also be performed by a Turing machine. This will be more readily

proved in Turing [2]. It follows at once, from the results of our Chap. 4 and the main
result of Kleene [1], that our present notion of computability is equivalent to general
recursiveness. Equivalence proofs for Post’s notion of 1-definability and binormality
do not appear in the published literature. 1-definability is quite similar, conceptu-
ally, to computability, and an equivalence proof is quite easy. A direct proof of the
equivalence of binormality with general recursiveness is given in the author’s disserta-
tion (Davis [1]). This equivalence is, in fact, an immediate consequence of the results
of our present Chap. 6.




CHAPTER 6

Hopcroft Ullman 1969 TURING MACHINES

6.1 INTRODUCTION

In this chapter we 1nvestigate a third type of recognizing device, the ’Turl'ng
machine. The Turing machine has been proposed as a mathematical model
for describing procedures. Since our intuitive notion of a procedure as a
finite sequence of instructions which can be mechanically carried out is not
mathematically precise, we can never hope to show formally that it is equiva-
lent to the precise notion of a Turing machine. However, from the definition
of a Turing machine, it will be readily apparent that any computation that
can be described by means of a Turing machine can be mechanically carried
out. Thus the definition is not too broad. It can also be shown that any
computation that can be performed on a modern-day digital computer can
be described by means of a Turing machine. Thus if one ever found a
procedure that fitted the intuitive notions, but could not be described by
means of a Turing machine, it would indeed be of an unusual nature since it
could not possibly be programmed for any existing computer. Many other
formalizations of a procedure have been proposed, and they have been shown
to be equivalent to the Turing machine formalization. This strengthens our
belief that the Turing machine is general enough to encompass the intuitive
notion of a procedure. It has been hypothesized by Church that any process
which could naturally be called a procedure can be realized by a Turing
machine. Subsequently, computability by a Turing machine has become the
accepted definition of a procedure. We shall accept Church’s hypothesis and
simply substitute the formal definition of a Turing machine for the intuitive
notion of a procedure.

6.2 DEFINITIONS AND NOTATION

Specifications for the Turing machine have been given in various ways in the
literature. We begin with the discussion of a basic model, as shown in Fig.
6.1. Later we investigate other models of the Turing machine, and show that
all these models are equivalent. The basic model has a finite control, an
input tape which is divided into cells, and a fape head which scans one
cell of the tape at a time. The tape has a leftmost cell but is infinite to the
right. Each cell of the tape may hold exactly one of a finite number of zape

80



Lewis Papadimitriou 1981

5.1 THE CHURCH-TURING THESIS

In this book we address this question: What can be computed? (And, more in-
triguingly, what cannot be computed?) We have introduced various and diverse
mathematical models of computational processes that accomplish concrete com-
putational tasks —in particular, decide, semidecide, or generate languages, and
compute functions. In the previous chapter we saw that Turing machines can
carry out surprisingly complex tasks of this sort. We have also seen that certain
additional features that we might consider adding to the basic Turing machine
model, including a random access capability, do not increase the set of tasks
that can be accomplished. Also, following a completely different path (namely,
trying to generalize context-free grammars), we arrived at a class of language
generators with precisely the same power as Turing machines. Finally, by try-
ing to formalize our intuitions on which numerical functions can be considered
computable, we defined a class of functions that turned out to be precisely the
recursive ones.

All this suggests that we have reached a natural upper limit on what a
computational device can be designed to do; that our search for the ultimate
and most general mathematical notion of a computational process, of an algo-
rithm, has been concluded successfully —and the Turing machine is the right
answer. However, we have also seen in the last chapter that not all Turing ma-
[chines deserve to be called “algorithms:” We argued that Turing machines that
semidecide languages, and thus reject by never halting, are not useful compu-
Fationa,l devices, whereas Turing machines that decide languages and compute

unctions (and therefore halt at all inputs) are. Our notion of an algorithm must

245



246 Chapter 5: UNDECIDABILITY

exclude Turing machines that may not halt on some inputs.

We therefore propose to adopt the Turing machine that halts on all inputs
as the precise formal notion corresponding to the intuitive notion of an “algo-
rithm.” Nothing will be considered an algorithm if it cannot be rendered as a
Turing machine that is guaranteed to halt on all inputs, and all such machines
will be rightfully called algorithms. This principle is known as the Church-
Turing thesis. It is a thesis, not a theorem, because it is not a mathematical
result: It simply asserts that a certain informal concept (algorithm) corresponds
to a certain mathematical object (Turing machine). Not being a mathematical
statement, the Church-Turing thesis cannot be proved. It is theoretically possi-
ble, however, that the Church-Turing thesis could be disproved at some future
date, if someone were to propose an alternative model of computation that was
publicly acceptable as a plausible and reasonable model of computation, and yet
was provably capable of carrying out computations that cannot be carried out
by any Turing machine. No one considers this likely.

Adopting a precise mathematical notion ot an algorithm opens up the 1n-
triguing mQssibility of formally proving that certain computational problems can-
not be solvdh\by any algorithm. We already know enough to expect this. In
Chapter 1 we atgyed that if strings are used to represent languages, not ev-
ery language can begpresented: there are only a countable number of stringg
over an alphabet, and thsge are uncountably many languages. Finite autompta,
pushdown automata, contedfree grammars, unrestricted grammars, and/I'ur-
ing machines are all examplesNgf finite objects that can be used for spgifying
languages, and that can be themsWves described by strings (in the ng&t section
we develop in detail a particular way§f representing Turing machingd as strings).
Accordingly, there are only countablyYpany recursive and recygbively enumer-
able languages over any alphabet. So altkough we have worked hard to extend
the capabilities of computing machines as A\ as possible, ip/absolute terms they
can be used for semideciding or deciding only\an infinitggimal fraction of all the
possible languages.

Using cardinality arguments to establish thgdimitation of our approach is
trivial; finding particular examples of compusdtioRl tasks that cannot be ac-
complished within a model is much more jfteresting\and rewarding. In earlier
chapters we did succeed in finding cepthin languages\that are not regular or
context-free; in this chapter we do #fe same for the reculgive languages. There
are two major differences, howefer. First, these new neggtive results are not
just temporary setbacks, tgM#e remedied in a later chapter Wwere an even more
powerful computationgldevice will be defined: according to th Church-Turing
thesis, computatigwdl tasks that cannot be performed by Turing\machines are
impossible, hag@less, undecidable. Second, our methods for provifg that lan-
guages g#€not recursive will have to be different from the “pumping™theorems
we used for exploiting the weaknesses of context-free grammars and finite au-



134 2 Language, Logic and Computations

cursivq functions. By functions we mean functions of one or more variables, hence
what wd\usually call arithmetical operations are also functions. Arithmetical funf-
tions are Nt only important examples of possibly computable objects, but also fhey
have a suffiiently rich structure. Thus it is possible to encode other computgions
only using opgrations on natural numbers. In general we have to choose a ghitable
domain for datd\In the case of Turing machines the domain consists of seqyences of
symbols, while ti§ domain of recursive functions is the set of all natural Aumbers.

In logic it is vely common to define a class inductively by saying that some
initial elements belodg to the class and giving some operators thatproduce new
elements in the class. TRe class consists of those elements that can e produced in
this way. (Think of, say, pypofs as defined by axioms and derivatiof rules.) Kleene,
as a logician, used this appxoach. He took some basic functiogs and considered
several operators producing néy functions from given ones. Thefbasic functions are
quite simple, such as the constdgt function 0, the successor function x + 1, etc.,
so they clearly should be consideNd computable. We can afd other functions, for
example, addition and multiplicatioN that we surely consiger computable, but it is
not necessary as the operators enable \s to produce them/ifrom the basic ones. The
operators are also simple. In particular\we take the opgrator of composition (also
called substitution) of functions. Having t}o functions/f and g of one variable, we
may first apply f to the input number and tin apply/g to the value produced by f.
The resulting function is the composition of fN\and 4. We may also compose binary
functions. Thus we can get, for example, the Nfiction x + yz from addition and
multiplication.

If we started with the basic arithmetic opfrationg (addition, multiplication and
constants) and only used composition we yould only\gbtain the functions that can
be expressed by algebraic terms (polyngfhials). Therefode, we need more operators.
Another basic operator is the operatoydf recursion. The iINme ‘recursive functions’
comes from this operator, but it isghisleading, as this opeNtor is still too weak to
produce all computable functigps. A special case of it is thyoperator of iteration,
by which we compose a fup€tion with itself a given numbeNof times. The most
powerful operator is the ysfnimization operator. It allows us to seych for the smallest
number satisfying a g#hdition.

We can imagig#recursive functions as follows. We expand our\‘algebraic” lan-
guage by takipg more operators on top of the composition. HavinX a sufficiently
powerful sg€ of basic functions and operators enables us to define a\ computable
functiog#by an expression in this language.

AOrmal definition of recursive functions is in Notes.

Pudlak 2013

The Church-Turing Thesis

Having definitions of computable functions the next natural question is how good
these definitions are. What seems clear is that each of the definitions only describes
functions that can be (at least in principle) computed. But do these concepts (Turing
machines, programs, recursive functions, etc.) cover all computable functions? This




2.4 Programs and Computations 135

is the same kind of a property that we studied in logical calculi and called complete-
ness, but here we have a problem: we do not have a class of functions that we would
consider as the computable functions and that would be defined independently of
a concrete computational model. We do not have a purely semantical definition of
computable functions. We do have a fairly clear idea about computable functions
and all the computation models are in good agreement with it, (the idea is that a
computation should use a finite number of elementary operations), but to make this
idea precise we have to opt for one of the computation models. Before we choose
one, it is, surely, worthwhile to compare them. In particular, is the class of numeric
functions computable by Turing machines the same as the class of recursive func-
tions? I have already said that all algorithms can be done on Turing machines, so
it should not come as a surprise that the two classes coincide. In fact, if you think
about these concepts, after a while you will realize that they are not so different as
they appear at first glance. If you try to implement algorithms on a Turing machine
you will soon realize that a programming language for it would be handy. That is
exactly like asking for a higher level language instead of a machine code for your
computer. So isn’t a Turing machine rather a primitive programming language? In
some sense it surely is. It is a programming language with a single data structure
which is a linear array and a single pointer whose position can be incremented or
decremented only by one. If you analyze it more, you may find an even closer cor-
respondence, for example, the program lines correspond to the state of the control
in the Turing machine, etc.

What about recursive functions? Also this definition can be interpreted as a kind
of a programming language. It is a programming language for computations with
natural numbers. It has some simple functions as primitive concepts, as most pro-
gramming languages do. Then it has certain operators that we can interpret as possi-
ble constructions that can be used in a program. One of these is composition, that is
used to form terms; this is also available in most programming languages. Another
is recursion, again this construction is very common in programming languages. It
helps when writing very short programs, but professional programmers try to avoid
it whenever possible, as it does not give them good control of the computation. Min-
imization is not present in programming languages as a basic construct (it gives even
less control of what is going on during the computation), but it can be programmed
easily. On the other hand, iteration corresponds to a simple loop in a program and
this is the most frequent construction.

Such mutual interpretations were found not only for the aforementioned three
concepts, but for all that had been proposed. This is not a proof, but sufficiently
good evidence that the concepts have been chosen correctly. The claim that these
concepts characterize computable functions is called the Church-Turing Thesis (al-
though neither Church nor Turing stated the thesis precisely in the way it is pre-
sented nowadays).

Can the Church-Turing Thesis be proved or disproved? Firstly, it cannot be
proved or disproved as a mathematical statement because it is not a mathemati-
cal statement. It relates mathematical concepts to part of our practical experience
for which we do not have a rigorous definition. Theoretically, it is possible that




136 2 Language, Logic and Computations

[ somebody MIgNt come up with a programining tick, an operator on runcuons, etc. |
that we would like to call computable but that would not be covered by the current
definitions of computations. In such a case we would have a reason to abandon the
thesis, but strictly speaking this would not be disproving. Considering the years of
experience with programming, such a possibility is almost excluded.

The only way to make this thesis a little more formal statement is to interpret
it as a postulate in physics. It perfectly makes sense to take the current physical
theories and look whether the phenomena there have a computable nature and how
they can be used for computations. The conjecture that all physically computable
functions are computable on Turing machines, or their equivalents, is called the
Physical Church-Turing Thesis. This question has been studied and lead to the new
concept of quantum computing. Quantum Turing machines are a new important
concept and it seems that they can solve some problems faster than classical Turing
machines (as we will see in Chap. 5), but when computational complexity is ignored,
the two models are equivalent. This is not a proof, but a strong evidence that the
Physical Church-Turing Thesis cannot be disproved using quantum theory.

Naturally, also general relativity was used in the attempts to refute the Physical
Church-Turing Thesis. There the situation is less clear. There are enthusiasts who
believe that some likely occurring phenomena, such as black holes, can be used to
solve problems that are not computable on Turing machines, others are more scep-
tical. In any case, this is only a theoretical discussion; nobody believes that such
schemes can ever be used to help people compute. This is in contrast with quantum
computing, where several teams of experimental physicists are working on con-
structing quantum computers. Nevertheless, the research into relativistic computa-
tions is extremely important because it concerns the fundamental question of what
can physically be computed. (For more about it, see Notes.)

It has also been suggested that a noncomputable function could be encoded in
fundamental physical constants. For example, the decimal digits of some constant
could define a noncomputable set. If there also were a way to measure the value
of the constant with arbitrary high precision, we would obtain a refutation of the
Physical Church-Turing Thesis. In the most optimistic scenario we would also know
that the digits of the constant encode a particular noncomputable set and we could
use it to decide Church-Turing undecidable problems.

It should be noted that the Physical Church-Turing Thesis is meaningful only if
the universe is infinite, which we still do not know. If space and time were finite,
then there could only be finite computations. In such a case the fundamental role
of computability would be replaced by the role of computational complexity. But I
believe that computational complexity is equally important for physics even if the
universe is infinite.

The tax and the Semantics of Comp ons

The distinction be
Syntax is (descriptions 0O

cmantics is essentially the same as in logic.
ing machines and programs in programming lan-



20 Recursive functions

Rogers 1968
§1.7 CHURCH’S THESIS

The claim that each of the standard formal characterizations provides
satisfactory counterparts to the informal notions of algorithm and algo-
rithmic function cannot be proved. It must be accepted or rejected on
grounds that are, in large part, empirical. (That the claim for one charac-
terization is equivalent to the claim for another follows from Parts I and 111
of the Basic Result.) The Basic Result provides impressive evidence that
the class of partial functions defined is a natural one (Part I) and that it is
sufficiently inclusive (Parts I and II). The Turing characterization pro-
vides convincing evidence that every partial function in the class is com-
putable by a procedure that is, intuitively, “mechanical.”” (In §1.10 we
shall discuss further the possibility that the formal class is too inclusive;
see question *10 in §1.1.) On the basis of this evidence, many mathema-
ticians have accepted the claim that the standard characterizations give a
satisfactory formalization, or ‘‘rational reconstruction,” of the (necessarily
vague) informal notions. This claim is often referred to as Church’s Thests.
Church’s Thesis may be viewed as a proposal as well as a claim, a proposal
that we agree henceforth to supply certain previously intuitive terms (e.g.,
“function computable by algorithm’’) with certain precise meanings.

In recent theoretical work, the phrase ‘“Church’s Thesis” has come to
play a somewhat broader role than that indicated above. In Parts IT and
III of the Basic Result, we noted that a number of powerful techniques
have been developed for showing that partial functions with informal
algorithms are in fact partial recursive and for going from an informal set
of instructions to a formal set of instructions. These techniques have been
developed to a point where (a) a mathematician can recognize whether or
not an alleged informal algorithm provides a partial recursive function,
much as, in other parts of mathematics, he can recognize whether or not
an alleged informal proof is valid, and where (b) a logician can go from an
informal definition for an algorithm to a formal definition, much as, in
other parts of mathematics, he can go from an informal to a formal proof.
Recursive-function theory, of course, deals with a precise subject matter:
the class of partial functions defined in §1.5. Researchers in the area,
however, have been using informal methods with increasing confidence.
We shall rely heavily on such methods in this book. They permit us to
avoid cumbersome detail and to isolate crucial mathematical ideas from a
background of routine manipulation. We shall see that much profound
mathematical substance can be discussed, proved, and communicated in
this way. We continue to clavm, however, that our results have concrete mathe-
matical status as results about the class of partial functions formally charac-
terized in §1.5. Of course, any investigator who uses informal methods and
makes such a clatm must be prepared to supply formal details if challenged.




§1.7 Church’s Thesis 21

Proofs which rely on informal methods have, in their favor, all the evidence
accumulated in favor of Church’s Thesis. Such proofs will be called proofs
by Church’s Thests.

We meet our first examples of such informal methods in the remaining
sections of this chapter. Almost all the proofs in this book will use Church’s
Thesis to some extent. The analogy to informal methods of proof in other
parts of mathematics is instructive. In both cases, the use of informal
methods is a matter not of extremes but of degree. The degree of formaliza-
tion of a proof usually depends upon the complexity and abstraction (what
might be called the “danger’’) of the argument. The degree of formal
detail we employ in this book will similarly vary with circumstances.

The beginning reader, who does not possess first-hand knowledge of
the evidence for Church’s Thesis, may be troubled by our arguments. To
whatever extent he experiences doubt, we urge him to use the books of
Davis and Kleene, in which he will find the tools needed to formalize our
arguments fully.

§1.8 GODEL NUMBERS, UNIVERSALITY, s-m-n THEOREM

We Mave adopted the Turing-machine characterization as/asic. We
saw in §1.5\that a set of instructions is a set of quadruples Aatisfying the
consistency rsgtriction. It is possible to list all sets of ingtructions by a
procedure simild to that indicated in §1.4 for listing all g/imitive recursive
derivations. Thi\procedure is itself algorithmic (in oyf first, unrestricted,
informal sense of th& word). It can be viewed as a #rocedure which asso-
ciates with each integd z the set of instructions fAlling at the (z + 1)st
place in the list of all set\of instructions. We ghsume now that we have
selected one such listing progedure. We keep/it fixed for the remainder
of the book. We do not give tdgmal details.

Definition P, is the set of insdxuctioph associated with the integer z in
the fixed listing of all sets of instructhoAs. =z is called the sndexr or Gadel
number of P..

0:® is the partial function of jArariabdes determined by P,. =z is also
called an indexr or Gdidel numberfior ¢,®. e shall drop the supersecript
(k) when its value is clear frgii context or whég £ = 1. We shall be most
often concerned with funcj#Oons of one variable. )

Clearly the listing gfocedure gives us both (a)\an algorithm for going
from any z to the gdrresponding P., and (b) an alggrithm for going from

any consistent se#’of quadruples P to a corresponding\integer = such that
Pis P,.

1 The ng#ation {x} (for our ¢.) also appears in the literature. Wg use the ¢, and
P, notatdns to emphasize further the distinction between extension dd name, i.e.,
betweed partial function and set of instructions.




9. The extent of the computable numbers.

No attempt has yet been made to show that the ¢ computable ’ numbers
include all numbers which would naturally be regarded as computable. All
arguments which can be given are bound to be, fundamentally, appeals
to intuition, and for this reason rather unsatisfactory mathematically.
The real question at issue is ‘“ What are the possible processes which can be
carried out in computing a number?”’

The arguments which I shall use are of three kinds.

(@) A direct appeal to intuition.

(b) A proof of the equivalence of two definitions (in case the new
definition has a greater intuitive appeal).

(c) Giving examples of large classes of numbers which are
computable.

Once it is granted that computable numbers are all *computable ”’,
several other propositions of the same character follow. In particular, it
follows that, if there is a general process for determining whether a formula
of the Hilbert function calculus is provable, then the determination can be
carried out by a machine.

I. [Type (@)]. This argument is only an elaboration of the ideas of § 1.

Computing is normally done by writing certain symbols on paper. We
may suppose this paper is divided into squares like a child’s arithmetic book.
In elementary arithmetic the two-dimensional character of the paper is
sometimes used. But such a use is always avoidable, and I think that it
will be agreed that the two-dimensional character of paper is no essential
of computation. I assume then that the computation is carried out on
one-dimensional paper, i.e. on a tape divided into squares. I shall also
suppose that the number of symbols which may be printed is finite. If we
were to allow an infinity of symbols, then there would be symbols differing
to an arbitrarily small extent}. The effect of this restriction of the number
of symbols is not very serious. It is always possible to use sequences of
symbols in the place of single symbols. Thus an Arabic numeral such as

t If we regard a symbol as literally printed on a square we may suppose that the square
is0<x<1, 0<y<1. The symbol is defined as a set of points in this square, viz. the
set occupied by printer’s ink. If these sets are restricted to be measurable, we can define
the ‘“distance ” between two symbols as the cost of transforming one symbol into the
other if the cost of moving unit area of printer’s ink unit distance is unity, and there is an
infinite supply of ink at x = 2, y = 0. With this topology the symbols form a condition-
ally compact space.

135




17 or 999999999999999 is normally treated as a single symbol. Similarly
in any European language words are treated as single symbols (Chinese,
however, attempts to have an enumerable infinity of symbols). The
differences from our point of view between the single and compound symbols
is that the compound symbols, if they are too lengthy, cannot be observed
at one glance. This is in accordance with experience. We cannot tell at
a glance whether 9999999999999999 and 999999999999999 are the same.

The behaviour of the computer at any moment is determined by the
symbols which he is observing, and his ** state of mind’’ at that moment.
We may suppose that there is a bound B to the number of symbols or
squares which the computer can observe at one moment. If he wishes to
observe more, he must use successive observations. We will also suppose
that the number of states of mind which need be taken into account is finite.
The reasons for this are of the same character as those which restrict the
number of symbols. If we admitted an infinity of states of mind, some of
them will be ¢“ arbitrarily close ’’ and will be confused. Again, the restriction
is not one which seriously affects computation, since the use of more compli-
cated states of mind can be avoided by writing more symbols on the tape.

Let us imagine the operations performed by the computer to be split up
into ‘‘simple operations’ which are so elementary that it is not easy to
imagine them further divided. Every such operation consists of some change
of the physical system consisting of the computer and his tape. We know
the state of the system if we know the sequence of symbols on the tape,
which of these are observed by the computer (possibly with a special
order), and the state of mind of the computer. We may suppose that in a
simple operation not more than one symbol is altered. Any other changes
can be split up into simple changes of this kind. The situation in regard to
the squares whose symbols may be altered in this way is the same as in
regard to the observed squares. We may, therefore, without loss of
generality, assume that the squares whose symbols are changed are always
““observed’ squares.

Besides these changes of symbols, the simple operations must include
changes of distribution of observed squares. The new observed squares
must be immediately recognisable by the computer. Ithinkitisreasonable
to suppose that they can only be squares whose distance from the closest
of the immediately previously observed squares does not exceed a certain
fixed amount. Let us say that each of the new observed squares is within
L squares of an immediately previously observed square.

In connection with ‘immediate recognisability ”’, it may be thought
that there are other kinds of square which are immediately recognisable.
In particular, squares marked by special symbols might be taken as imme-

136




diately recognisable. Now if these squares are marked only by single
symbols there can be only a finite number of them, and we should not upset
our theory by adjoining these marked squares to the observed squares. If,
on the other hand, they are marked by a sequence of symbols, we
cannot regard the process of recognition as a simple process. This is a
fundamental point and should be illustrated. In most mathematical
papers the equations and theorems are numbered. Normally the numbers
do not go beyond (say) 1000. It is, therefore, possible to recognise a
theorem at a glance by its number. But if the paper was very long, we
might reach Theorem 157767733443477 ; then, further on in the paper, we
might find ‘... hence (applying Theorem 157767733443477) we have ... ”".
In order to make sure which was the relevant theorem we should have to
compare the two numbers figure by figure, possibly ticking the figures off
in pencil to make sure of their not being counted twice. If in spite of this
it is still thought that there are other “immediately recognisable’’ squares,
it does not upset my contention so long as these squares can be found by
some process of which my type of machine is capable. This idea is
developed in III below.
The simple operations must therefore include:

(a) Changes of the symbol on one of the observed squares.

(b) Changes of one of the squares observed to another square
within L squares of one of the previously observed squares.

It may be that some of these changes necessarily involve a change of
state of mind. The most general single operation must therefore be taken
to be one of the following:

(A) A possible change (a) of symbol together with a possible
change of state of mind.

(B) A possible change (b) of observed squares, together with a
possible change of state of mind.

The operation actually performed is determined, as has been suggested
on p.136, by the state of mind of the computer and the observed symbols.
In particular, they determine the state of mind of the computer after the
operation is carried out.

We may now construct a machine to do the work of this computer. To
each state of mind of the computer corresponds an ‘m-configuration’ of
the machine. The machine scans B squares corresponding to the B squares
observed by the computer. Inany move the machine can change a symbol
on a scanned square or can change any one of the scanned squares to another
square distant not more than L squares from one of the other scanned

137




squares. The move which is done, and the succeeding configuration, are
determined by the scanned symbol and the m-configuration. The
machines just described do not differ very essentially from computing
machines as defined in § 2, and corresponding to any machine of this type
a computing machine can be constructed to compute the same sequence,
that is to say the sequence computed by the computer.

II. [Type (b)].

If the notation of the Hilbert functional calculust is modified so as to
be systematic, and so as to involve only a finite number of symbols, it
becomes possible to construct an automatici machine 3¢, which will find
all the provable formulae of the calculus§.

Now let a be a sequence, and let us denote by G,(x) the proposition
“The z-th figure of a is 1 ”’, so that| — G,(x) means ‘ The 2-th figure of a
is 0”’. Suppose further that we can find a set of properties which define
the sequence a and which can be expressed in terms of G,(x) and of the
propositional functions N (x) meaning ‘‘x is a non-negative integer ’ and
F(z, y) meaning ‘“y=2x-+1"". When we join all these formulae together
conjunctively, we shall have a formula, % say, which defines a. The terms
of ¥ must include the necessary parts of the Peano axioms, viz.,

(39) N(u) & (2) (N (2)> (39) F(z, 9)) & (F(z, y) > N(y)),

which we will abbreviate to P.
When we say “ U defines a’’, we mean that — U is not a provable
formula, and also that, for each %, one of the following formulae (A,) or

(B,) is provable.
U & F™—> G, (u™), (A)T

B (), ®
where F™ stands for F(u,u') & F(u', ") & ... F(u™D, uM),

t The expression ¢ the functional calculus” is used throughout to mean the restricted
Hilbert functional calculus.

1 It is most natural to construct first a choice machine (§2) to do this. But it is
then easy to construct the required automatic machine. We can suppose that the choices
are always choices between two possibilities 0 and 1. Each proof will then be determined
by a sequence of choices 4,, 4y, ..., %, (3, =0 or 1, =0 or 1, ..., 4, = 0 or 1), and hence
the number 2"+ 4, 2#~1414, 2724 ... 44, completely determines the proof. The automatic
machine carries out successively proof 1, proof 2, proof 3, ....

§ The author has found a description of such a machine.

II The negation sign is written before an expression and not over it.

4 A sequence of r primes is denoted by (7.

138




98 V RECURSIVE AND TURING-COMPUTABLE FUNCTIONS

Yasuhara 1971 .
if g,(n) is defined

otherwise

g,(p") 1is defined

otherwise

Whatever class of functions may be encompassed by the idea of total
effectively computable functions, surely the class of recursive functions must
be included. The facts that the recursive functions and the Turing-computable
functions are the same class of functions, and that no one has yet produced
a function which all agree to as being a total effectively computable function
but not a recursive function, are often taken as weighty evidence in support
of the following conjecture, known as Church’s thesist: Any total
effectively computable function is a recursive function. Of course, “total
effectively computable function” is not defined precisely; thus, perhaps
the thesis should not be called a conjecture, since it cannot be proved. It
might better be referred to as a working hypothesis. The student is en-
couraged to use Church’s thesis in proving theorems and solving problems.
However, he should not use it without giving some thought to backing up
his arguments with actual Tm’s or recursive functions. Let us give the name
the extended Church thesis  to that version of Church’s thesis that says that
the class of partial effectively computable functions coincides with the class
of partial recursive functions. Of course, this cannot be proved either, but
we have as evidence in favor of its truth that the class of partial recursive
functions coincides with the class of functions that are Turing computable
in general. The reader is also encouraged to use the extended Church thesis,
but to do so with considerable caution, as there are serious pitfalls. One in
particular is of the following nature: since we are dealing with procedures
that may not terminate, we can safely say, *“if the procedure terminates,
do so-and-so”; but we cannot say, “if the procedure does not terminate,
do so’-and-so’.” For examples of the possible difficulties, do exercises 5.9
and 5.10 below.

+ For Church’s original discussion, see Church (1936), sections 1 and 7. Further interest-
ing discussions of this topic can be found in Davis (1958, p. 10), Kleene (1952, pp. 300, 331,
see his index for more), Rogers (1967, section 1.7), and Shoenfield (1967, section 6.5).

1 This is not a standard name. ‘‘ Church’s thesis’’ is sometimes used to include what is
here called ‘“ the extended Church thesis.”” Consult the references of the previous footnote,
in particular Kleene (1952, p. 331).



