
CS 4510 Automata and Complexity 11/20/2023

Lecture 22: Relativization

Lecturer: Abrahim Ladha Scribe(s): Samina Shiraj Mulani

1 Introduction

We give strong evidence that solving P
?
= NP is a very hard problem. We do not know how

to solve the problem, but to a deep extent, we know how not to solve it. We know that
there can be no easy proof of the question.

2 Oracles

The oracle of Delphi was like a witch or a shaman. You would bring her gifts and she would
answer your questions. There would be no provided explanation. She is an antiquated
version of a magic eight ball. An oracle machine has some similar mysticism.

Definition 2.1 (Oracle Machine). An oracle machine is a fictional Turing Machine with
an additional tape. It writes down a query on this special tape and issues an instruction.
Then the tape clears and all that is left is the answer, a 1 or 0. This occurs in unit time.
We formalize an oracle as a language A, and the oracle machine MA.

This oracle machine MA can test membership to language A in unit time. Many natural
things we have discussed appear to be representable in an oracle way. Nondeterminism was
originally formulated like an oracle. Both many-one and polytime reductions could be
formalized in an oracle fashion. The study of oracle machines was intended to study how
easy or hard certain problems can become relative to others. If you get instantaneous access
to a specfic language, what can you do?

Definition 2.2 (Relativized Complexity Class). For a class C and language A, we let CA

be the languages decidable by C-machines with oracle access to A.

For example, consider the structure of PSAT. Certainly, any oracle machine can ignore
its oracle, so P ⊆ PSAT. Also notice that all of NP is deterministic polytime computable
relative to SAT. Since SAT is NP-complete under polynomial time reduction, NP ⊆ PSAT.
Certainly PSAT is very different than P. In fact, coNP ⊆ PSAT, as TAUT ∈ PSAT. We won’t
explain why, but NPSAT is actually bigger than NP as well.

As a second example, Consider PA if A ∈ P. Certainly P ⊆ PA. We may prove PA ⊆ P
by simulation. Replace each oracle call with a polynomial time algorithm to decide A. This
is just a polynomial time algorithm and the result follows.

We don’t really care about comparing two classes, one with and one without the oracle.
We care about a “relativized world”. One in which every machine has oracle access.

Definition 2.3 (Relativized World). A world relative to oracle A is one in which every
machine has access to the same oracle. Every complexity class is a relativized one.

22: Relativization-1

For some fixed A, what does the world look like? What is the relationship between
LA,PA,NPA,PSPACEA and so on. How does this relativized world differ from our own?
For each fixed A, there exists an entire separate world with its own language and rules and
relationships. What theorems that we have proven in our world hold in all worlds?

3 Time Hierarchy Theorem

Now we prove a weaker form of the time-hierarchy theorem. A hierarchy is like a ladder,
we are able to prove that more asymptotic time gives more power. The strongest form of
the theorem says

TIME(o(f(n)/ log f(n)) ⊊ TIME(f(n))

We prove a weaker form of the theorem to demonstrate the same technique.

Theorem 1 (Time Hierarchy Theorem). ∀k TIME(nk) ⊊ TIME(nk+1)

Proof. The containment is obvious, so we only need to show existence of a language com-
putable in time O(nk+1) but not in time O(nk). We will diagonalize over all languages
decidable in time nk and make sure our language is decidable in time nk+1.
Let M1,M2, ... be an enumeration of the Turing machines in TIME(nk). Construct a Turing
machine D as follows.

Algorithm 1

D on input wi

Compute n = |wi|
Simulate Mi on wi for n

k steps
if Mi accepts wi then

reject
end if
if Mi rejects wi then

accept
end if

Notice D on input wi returns 1 − Mi(wi). So ∄j such that L(D) = L(Mj), so L(D) ̸∈
TIME(nk). Since it differs from every nk-time machine, there is no nk time algorithm to
decide L(D). What is the cost of simulation? Turns out this is complicated but we can
safely upper bound that simulation of Mi for a single step takes at most O(n) steps for the
simulator. Since nkn = nk+1, we conclude L(D) ∈ TIME(nk+1).

Two quick comments, first, the nk machines are not enumerable, so this is only a rough
proof idea. There is a fix around that, but it can be quite messy. Second, notice that the
tightness of our hierarchy depends on the complexity of simulation. This can vary actually
from this or that Turing machine formalization. The fact there is a hierarchy at all is the
take-away, rather than the specific hierarchy itself.

22: Relativization-2

It turns out the time hierarchy theorem is true in every single relativized world.

Theorem 2 (Relativized Time Hierarchy Theorem). Every relativized world has a time
hierarchy theorem. For A any oracle that ∀k TIME(nk)A ⊊ TIME(nk+1)A.

Proof. We simply copy and paste the proof of the time hierarchy theorem and make minor
adjustments to the simulation. We give an oracle machine DA so that DA diagonalizes
against all nk oracle machines but runs in time nk+1.

Algorithm 2

D on input wi

Compute n = |wi|
Simulate Mi on wi for n

k steps
if Mi accepts wi then

reject
end if
if Mi rejects wi then

accept
end if

Algorithm 3

DA on input wi

Compute n = |wi|
Simulate* Mi

A on wi for n
k steps

if Mi
A accepts wi then

reject
end if
if Mi

A rejects wi then
accept

end if

In our world, D simulates Mi. In the relativized world, DA simulates Mi
A. If Mi

A makes
an oracle call to A, DA simulates this instruction of Mi

A by calling its own oracle. Here
the simulation only has this slight difference.

4 Relativization

Notice that since the proof of the time hierarchy theorem only interacted with computation
in a black box way, we were able to modify the proof in an extremely simple way so that it
held for all oracles, so that every relativized world had its own time hierarchy theorem.

Definition 4.1 (Relativizing Proof). A proof relativizes if you may copy-paste from our
world to all worlds so that it holds for any oracle.

Relativization is a specific kind of generalization. Determining if a proof relativizes is
not a formal notion, but a sort of vibes based informal one. Which proofs have we done
appear to relativize? Certainly every proof by diagonalization appears to relativize. Which
proofs have we done so that appear to relativize and which ones don’t appear to?

Probably relativizes:

• existence of undecidable languages

• time hierarchy theorem

• Ladner’s theorem

• Savitch’s theorem

• NPA = NPA
v

• PA ̸= EXPA

• and more...

22: Relativization-3

Probably doesn’t relativize:

• Cook-Levin

• TQBF is PSPACE-complete

• and more?

For the results which probably don’t relativize, it is unclear where we could “stick the
oracle”. Most of the proofs we have done so far appear to relativize, they involve simulations
of one machine by another in a purely black box way. The internals of computation are not
involved. We did nothing with the machines except run them. Again, if a proof relativizes
or not is an informal notion, but it is unambiguous.

5 Contradictory Relativizations

As we may relativize proofs in our world to all worlds, we may relate the truth of other

worlds back to our own. Could there exist a relativizing proof of P
?
= NP? Suppose maybe

it could, by diagonalization. It might look like this. If it was a relativizing proof, then its
counterpart would also exist.

Algorithm 4

Enumerate P machines M0,M1, ...
D on input wi

Simulate Mi on wi

Return opposite

Conclude L(D) ̸∈ P
Somehow show L(D) ∈ NP

Algorithm 5

Enumerate PA machines MA
0 ,MA

1 , ...
DA on input wi

Simulate* Mi
A on wi

Return opposite

Conclude L(DA) ̸∈ PA

Somehow show L(DA) ∈ NPA

If such a proof existed to prove P ̸= NP, then it would be true that for all oracles O
that PO ̸= NPO. We give an oracle A so that PA = NPA. Then no such relativizing proof
can exist to show that P ̸= NP. Could there exist a relativizing proof that P = NP? Then
it would be true that for all oracles O that PO = NPO. We give an oracle B such that
PB ̸= NPB. We show two oracles A,B such that

PA = NPA PB ̸= NPB

Since there exists two relativized worlds, one where P = NP and one where P ̸= NP, no proof

of P
?
= NP in our world can generalize to all worlds. Our demonstration of contradictory

relativizations will prove that there is no relativizing proof of P vs NP in our world! You
cannot use diagonalization to separate P from NP!!!!!

6 A World Where its True

Theorem 3. There is a world relative to oracle A where PA = NPA

Proof. We choose A to elevate PA,NPA to the same class where non-determinism gives no
power. Certainly ∀A PA ⊆ NPA so we show for some A that NPA ⊆ PA. We will use space

22: Relativization-4

complexity. Let A = TQBF. Then

NPA = NPTQBF ⊆ NPSPACE = PSPACE ⊆ PTQBF = PA

The containments may be obvious but we expand on each.

• NPTQBF ⊆ NPSPACE Consider an NP machine with oracle access to TQBF. We can
simulate this machine on an NPSPACE machine. Simply replace the oracle by our
linear space algorithm, and simulate the rest of the computation identically

• PSPACE = NPSPACE This follows immediately from Savitch’s theorem.

• PSPACE ⊆ PTQBF Recall that TQBF is PSPACE-complete. We gave a polynomial time
reduction for any L ∈ PSPACE that L ≤p TQBF. We simulate a PSPACE machine on
a PTQBF machine as follows. Given the description of the polynomial space machine
and its input, we apply the reduction to get some quantified formula Φ. We query
the oracle and accept/reject appropriately based on its answer. This reduction takes
polytime, and there is only one query, so this machine runs in polytime.

A = TQBF that NPA = PA.

7 A World Where its False

Theorem 4. There is a world relative to oracle B where PB ̸= NPB

Proof. Showing oracle B such that PB ̸= NPB will be much harder. Ironically, we will
construct B by diagonalization. We cannot prove P ̸= NP by diagonalization, but we can
prove PB ̸= NPB by diagonalization.

We want to show a language exists which could not be in PB. How we will show it
cannot be done in polynomial number of steps? We will define our language such that any
correct algorithm to decide it must make an exponential number of oracle queries. Since
each query takes unit time, an exponential number of queries implies that the machine to
decide this language must take exponential time, and and thus could not have been a PB

machine. Let LB contain the string 1n if there is a string in B or length n.

1n ∈ LB ⇐⇒ ∃x ∈ B with |x| = n

Let M1
B,M2

B, ... be an ordering of the oracle machines of PB. Lets even suppose they
are weakly sorted to guarantee Mi

B halts in time ni on all inputs. We will construct B
by diagonalization (and therefore LB) so that no polytime oracle machine may correctly
decide LB. We proceed in a sequence of stages. At each stage, a finite number of strings
have been prophesized to be in B and not in B. In stage i, we will ensure that machine
MB

i is incorrect.
Suppose we are stage i. Let w be the largest string in B. Choose n such that 2n > ni

and n > |w|. Note that n is chosen so that none of the 2n strings of length n have been
prophesized to be in B (yet). We will increase the knowledge about B such that Mi

B

22: Relativization-5

accepts 1n ⇐⇒ 1n /∈ LB.
Run Mi

B on 1n and record all its oracle queries. On its query to oracle B, if it has been
queried by that string before, the oracle will respond consistently. If B has not seen the
string before, the oracle will prophesize no; that string will be defined to not be a member
of B.

• If Mi
B accepted 1n, all other strings of length n are declared not to be in B. This

ensure that 1n ∈ L(MB
i) =⇒ 1n ̸∈ LB.

• If Mi
B rejected 1n, declare one string of length n that MB

i did not have time to query
to be in B. Since Mi

B runs in time ni, it does not have time to query B on all 2n

strings of length n, so such a string must exist that it did not query. This ensure that
1n ̸∈ L(MB

i) =⇒ 1n ∈ LB.

Since for every i there is an n such that 1n ∈ LB ⇐⇒ 1n ̸∈ L(MB
i). Since this is done for

all polytime oracle machines, none of them can decide LB so B is defined so that LB ̸∈ PB.
Why is LB ∈ NPB? Rather than testing all 2n strings against the oracle, nondeter-

ministically guess the right one to test the oracle against. This takes unit time on an
NPB machine but exponential time on a PB machine. Since LB ∈ NPB \ PB, we observe
PB ̸= NPB.

8 Frustration. Coping. Crying.

This result has set the stage for the next half-century of complexity research. Any proof
which could resolve P vs NP would genuinely have to use new techniques, ones which do
not relativize. We weren’t even sure at the time if such techniques existed! The last fifty
years has seen attempts trying to bend the rules. To list a few:

• Randomness: What if SAT is decidable in polytime by an algorithm which returns the
assignment correctly only two thirds of the time? Maybe the deterministic requirement
of the algorithm is too stringent.

• Approximation: What if there exists an algorithm for SAT to satisfy a majority of the
clauses in polytime, but this last stretch to all clauses requires exponential? Maybe
the correctness requirement of the algorithm is too stringent.

• Circuits: Proofs using circuits do not appear to relativize. Does there exist a super
polynomial lower bound on circuit size for SAT? Maybe the uniformity requirement
of the algorithm is too stringent.

All of these areas have been good at asking questions and bad at giving answers. Random-
ized or approximate polytime algorithms for SAT can imply the existence of deterministic

polytime algorithms for SAT, making these rather hard as well. The fact that P
?
= NP

has no relativizing proof is called the relativization barrier. This is not the only barrier
the problem admits! Complexity theory has gone through several historical eras. We are
further from answering P vs NP than when the question was conjectured. The relativization
barrier was just the first hurdle, we would hit many many more. Truly, there is no harder
problem. No problem has produced more corpses than P vs NP.

22: Relativization-6

