
CS 4510 Automata and Complexity September 11th 2023

Lecture 5: Context-Free Grammars

Lecturer: Abrahim Ladha Scribe(s): Rishabh Singhal

1 Background

Automata So far we have only looked at automata. These are usually tasked with Decision or
Recognition. It’s a fairly mechanical model, a decision procedure. You look at the
input scanning left to right and do something. This corresponds well to your previous
intuition on programming. Let D be an automata.

– Given w ∈ Σ∗, is w ∈ L(D)? This is not that hard, you simply run the automata
on the input.

– Characterizing all of L(D)? This can be much harder for an automata. If I give
you a DFA or NFA and ask you to describe exactly the strings it accepts and
rejects, this is not as easy.

Grammars In contrast, a grammar is tasked with Production or Generation. A grammar
will non-deterministically produce only the correct strings, like a flower blooming. It
does not go left to right, but from inside out. It doesn’t start with an input to look
at, it starts with nothing. Defined with the rules we give it, it will produce a string
according to those rules.

– Given w ∈ Σ∗, is w ∈ L(G)? This is surprisingly non-trivial

– Characterizing all of L(G)? This is surprisingly easier.

2 Formal Definition of Context-Free Grammar

We represent a context-free grammar (CFG) as a four tuple (V,Σ, R, S) such that:

V Non-Terminals or Variables. These are always capitalized like {S,A,B, ...}

Σ Terminals or our alphabet. These are always lower-case like {a, b, c,}

R Productions or Rules. Each are of them will be of form V → (V ∪Σ)∗. The left-hand
side of the production will always be a single non-terminal and the right-hand side
will be a string of terminals and non-terminals.

S ∈ V is our designated start non-terminal.

5: Context-Free Grammars-1

2.1 Computation

For A ∈ V,w ∈ (V ∪ Σ)∗, with production of the form A → w, we apply a production as a
substring replacement of a “working string” like xAz =⇒ xwz, for x, z ∈ (V ∪Σ)∗. When
we write wi =⇒ wi+1 we mean that wi “yields” wi+1 after application of one production.
If S =⇒ w1 =⇒ w2 =⇒ w3... =⇒ w with w ∈ Σ∗ we say that w ∈ L(G) and may

write S
∗

=⇒ w. We stop applying productions only when there are no more non-terminals
in the working string.

For a context-free grammar G, we characterize the set of strings in L(G) as those and
only those produced non-deterministically starting from S. Observe that a production halts
when there are no more non-terminals in the working string. We say that a language L is
context-free if ther exists a context-free grammar G such that L = L(G).

3 Examples

Like a state diagram, you can give all parts of the CFG by just giving the set of productions.
It implicitly gives the terminals and non-terminals, and we always denote S as the start
non-terminal.

3.1 {anbn | n ∈ N}

We write {S → aSb, S → ε} or just {S → aSb | ε}. If we have two or more productions with
the same beginning non-terminal, we may use “|” as a shorthand to “or” those productions
together. This grammar still has two distinct productions. Let us say we want to produce
a3b3 the process we follow is

S =⇒ aSb =⇒ a(aSb)b =⇒ aaSbb =⇒ aaaSbbb =⇒ aaabbb =⇒ a3b3

We repeatedly apply the first production, and terminate when we have no more non-
terminals in our working string. This occurs when we apply the second rule, S → ε.
Notice that it has to produce exactly the strings of the form anbn. Also notice how the
nondeterminism decides what string is produced is determined by the order of the sequence
of rules you apply. This was our canonical example of a non-regular language, the first one
we used for pumping. This should convince you atleast, that the languages produced by
context-free grammars, L (CFG), is not equal to the regular languages. Later we will show
it is a strict super set.

3.2 {wwR | w ∈ Σ∗}

Our productions are similar. {S → aSa | bSb | ε}. This generates even length palindromes.
As we apply productions, the left and right of our primary recursive production effectively
act like two stacks, mirrors of each other. This generates the string which is a palindrome
and these strings are also even in length. We can conserve the same idea, to generate
palindrome of odd length.

5: Context-Free Grammars-2

3.3 {wΣwR | w ∈ Σ∗}

We write this as {S → aSa | bSb | a | b}. We may combine ideas from the previous two
examples to show the set of all palindromes is a context-free language, with the grammar
{S → aSa | bSb | a | b | ε}. We pumped a third language, {ww | w ∈ Σ∗}. As some
foreshadowing, this language is not regular, but it is also not context free.

3.4 Σ∗

There exist many equivalent grammars for this language. These may include

• S → aSa | bSb | aSb | bSa | a | b | ε

• S → aaS | abS | baS | bbS | a | b | ε

• S → aS | bS | ε

3.5 1∗

This one is easy, {S → 1S | ε}

3.6 ∅

If a grammar produces no strings, not even ε, it is either trivial, or some how does not have
a halting condition. There are a few you could come up with, but a non-trivial grammar
for this would be {S → A,A → S}. No production of this terminates with a string of only
terminals, so it produces no strings.

3.7 Dyck Language

Consider the grammar {S → (S) | SS | ε}. This language is the set of balanced, or matching
paranthesis. It has a special name, called the Dyck language.

We can prove it is not regular by closure. Assume to the contrary L(G) was regular.
Then by closure, so must be L(G) ∩ (∗)∗. The left side enforces that the number of opens
equals the number of closes, and the right hand side enforces that all the opens come before
all the closes. The intersection is the logical and of these, so we see this intersection must
be equal to {(n)n | n ∈ N}, our canonical non-regular language, a contradiction. Therefore,
the Dyck language is not regular.

3.8 Arithmetic Expressions

Consider the following grammar:

S → S + T | T
T → T × F | F
F → (S) | a

5: Context-Free Grammars-3

with V = {S, T, F},Σ = {(,),×,+, a}. Lets do an example of a long production to show
this grammar generates (a+ a)× a

S =⇒ T =⇒ T × F =⇒ F × F =⇒ (S)× F =⇒
(S)× a =⇒ (S + T)× a =⇒ (T + T)× a =⇒ (F + T)× a =⇒

(F + F)× a =⇒ (F + a)× a =⇒ (a+ a)× a

3.9 {wx | x contains wR as a substring}

If x contains wR as a substring, then x = Σ∗wRΣ∗, so wx = w(Σ∗wRΣ∗) = (wΣ∗wR)Σ∗.
We first will nondeterministically produce and match w with wR, then we will produce the
rest of x. S → XY, Y → aY | bY | ε,X → aXa | bXb | Y . This is a cool grammar, as it
shows the power of nondeterminism. You may have had to create some previous non-trivial
deterministic algorithms in order to find the longest palindromic substring or something.
You were looking for a needle in a haystack. Here through the power of nondetermin-
ism, we can come at the problem from a different direction. First place the needle, then
nondeterministically build all possible haystacks around it.

3.10 One last example

Consider {anbambn+m | n,m ∈ N}. First notice that for some n,m that anbambn+m =
anbambnbm. We have matching blocks of the same size, but we can’t pair them up as
written. We notice that letters of the same kind obviously commute, so we see anbambnbm =
anbambmbn = an(bambm)bn. This gives us the intuition on how we would build our grammar
as {S → aSb | bR,R → aRb | ε}. Just to work out some productions, they may look like

S
∗

=⇒ anSbn
∗

=⇒ anbRbn
∗

=⇒ anbamRbmbn
∗

=⇒ anbambmbn = anbambm+n

4 Relationship with Regular Languages

4.1 By Closure

We prove that every regular language is also context free. Let L (CFG) be the languages
produced by context-free grammars. We prove L (REX) ⊊ L (CFG) by induction. Note
that the containment is strict because we know that {anbn | n ∈ N} cannot be regular by
the pumping lemma, but is context-free.

First we prove the base case. We give context-free grammars for ∅, ε, a, b

∅ S → S

ε S → ε

a S → a

b S → b

5: Context-Free Grammars-4

Let G1, G2 be two CFGs to produce L1 and L2 with start non-terminals S1, S2 respec-
tively. We prove that the context-free grammars are closed under union, concatenation,
and star.

L1 ∪ L2 Copy all productions, add new start state S, and a new production S → S1 | S2

L1L2 Similarly, with new production S → S1S2

L∗
1 Similarly add new productions S → S1S | ε

Through a similar process to converting a regular expression into an NFA, you may apply
this proof to convert a regular expression into a context-free grammar, thus concluding the
proof that every regular language is also context-free. Later we will show CFLs are not
closed under intersection or complement. This may be intuitive, if you observe the behavior
of a CFG. It only knows how to grow correct strings. Given a grammar which produces
only the right strings, it gives no idea on how to create a grammar to only produce the
wrong ones.

4.2 Regular Grammars

We say a grammar is right-regular if it only has productions of the form A → aB or
A → a or A → ε, where A,B are any non-terminals, and a is any terminal. Certainly
every right-regular grammar is also context-free, we claim that the right-regular grammars
decide exactly the regular languages. The proof of this characterization is not complicated,
but tedious1. Instead we will highlight just the part of given a DFA, how one might
construct a right-regular grammar. This should convince you that we are working with
a strictly more powerful computational model, L (DFA) ⊊ L (CFG). For a DFA of the
form (Q,Σ, q0, δ, F) we construct a grammar (V,Σ, R, S).

• For Q = {q0, ..., qk} we have non-terminals V = {Q0, ..., Qk}

• The set of terminals for our grammar is identical to the alphabet for our DFA: Σ = Σ

• For q0 the start state of our DFA, we designate our start non-terminal as Q0

• For every transition of the form δ(qi, a) = qj , we add production Qi → aQj

• For every qf ∈ Q, we add production Qf → ε

Convince yourself of its correctness.

1I have a more detailed proof here https://ladha.me/files/sectionX/regulargrammars.pdf

5: Context-Free Grammars-5

https://ladha.me/files/sectionX/regulargrammars.pdf

	Background
	Formal Definition of Context-Free Grammar
	Computation

	Examples
	{anbn | n N}
	{wwR | w *}
	{wwR | w *}
	*
	1*
	
	Dyck Language
	Arithmetic Expressions
	{wx | x contains wR as a substring}
	One last example

	Relationship with Regular Languages
	By Closure
	Regular Grammars

